# Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids

Vasu Malhotra, Benedict J. Elvers, Ramapada Dolai, Nicolas Chrysochos, Siva Sankar Murthy Bandaru, Tejaswinee Gangber, Neethinathan Johnee Britto, Ivo Krummenacher, Gopalan Rajaraman,\* Holger Braunschweig,\* Carola Schulzke,\* and Anukul Jana\*



quently, this coupling strategy was strategically applied to the synthesis of *p*-phenylene- and  $p_{,p'}$ -biphenylene-bridged carbon/ carbon-centered electron-deficient diradicaloids. The employed  $\pi$ -conjugated spacer plays a crucial role in determining the triplet population at room temperature by modulation of the singlet—triplet gap: EPR inactive for *p*-phenylene vs EPR active for  $p_{,p'}$ biphenylene. Nearly two decades after the disclosure of carbodicarbenes as donor-stabilized atomic carbon equivalents by Tonner and Frenking in 2007, we demonstrate their cross-couplings with a series of aryl halides/dihalides and, based on this, developed a modular methodology for the systematic synthesis of various electron-deficient diradicaloids.

# INTRODUCTION

Transition metal-catalyzed cross-coupling reactions between functionalized aryl compounds have been, and still are, critically important in the synthesis of a variety of functional molecules ranging from pharmaceuticals to polymers (I, Scheme 1).<sup>1</sup> Such cross-coupling reactions were also known for the buildup of various alkyl-, vinyl-, and alkynyl-functional molecules.<sup>2</sup> Furthermore, carbon(II)-centers of N-heterocyclic carbenes (NHCs) were coupled to various aryl halides, resulting in the formation of (dihydro)-imidazolium cations (II, Scheme 1), which were then utilized as synthons for the generation of radicals under one-electron reduction.<sup>3</sup> Following the discovery of the concept of carbodicarbene as a donorstabilized atomic carbon equivalent,<sup>4</sup> various functionalizations of carbodicarbenes have been reported, primarily harnessing the nucleophilic properties of the carbon(0)-center.<sup>5</sup> These findings inspired us to investigate the feasibility of crosscoupling reactions of the carbonic carbon(0)-center. Herein, the successful cross-coupling of an NHC/CAAC-based carbodicarbene (NHC = N-heterocyclic carbene and CAAC = cyclic(alkyl)(amino)carbene)<sup>6</sup> with different aryl chlorides, bromides, and iodides is reported (III, Scheme 1). The resulting aryl-functionalized cationic carbodicarbene derivatives are able to undergo one-electron oxidation under the formation of radical-dications, which then follow different modes of radical-radical dimerization based on the nature of the aryl groups employed. Furthermore, we also considered the use of  $\pi$ -conjugated diiodoaryls as coupling partners, and the resulting dicationic bis-carbodicarbene derivatives undergo reversible two-electron oxidation, yielding electron-deficient diradicaloids. Please note that NHC/CAAC-based carbodicarbene can be depicted in various forms **A**–**D**, considering different concepts of bonding and representation (Scheme 1).' We have opted to represent it here as the mono-zwitterionic form **C** by taking into account the different electronic natures of NHC and CAAC; specifically, NHC is relatively less nucleophilic and less electrophilic in nature than CAAC,<sup>8</sup> which is also reflected in the solid-state molecular structure of NHC/CAAC-based carbodicarbene.<sup>6</sup>

# RESULTS AND DISCUSSION

The cross-coupling reactions of NHC/CAAC-based carbodicarbene 1 with phenyl chloride/bromide/iodide or 4-*tert*butyl-phenyl bromide/iodide in the presence of a catalytic amount of  $Ni(COD)_2/PPh_3$  led to the isolation of yellow

Received:July 1, 2024Revised:October 2, 2024Accepted:October 3, 2024Published:October 19, 2024





Scheme 1. Schematic Representation of Reactions I–III (Corresponding Counter Anions of Ionic Compounds Are Omitted for Clarity) and Four Possible Representations of NHC/CAAC-Based Carbodicarbene A–D



crystalline **2a**/**2b** (Scheme 2).<sup>9</sup> In the <sup>13</sup>C{<sup>1</sup>H} NMR spectra of **2a** and **2b**, the resonances at  $\delta$  = 88.80 and 88.66 ppm are assigned to the aryl-functionalized carbonic carbon, respectively. The single-crystal X-ray diffraction analyses of **2a** and **2b** reveal that the C1–C3 bond lengths (1.454(4)/1.436(5) Å) are longer than the C1–C2 distance (1.368(4)/1.363(5) Å), reflecting the different electronic natures of NHC and CAAC (Figure 1).

With cyclic voltammetry, it was shown that both compounds **2a** and **2b** are prone to oxidation at  $E_{1/2} = 0.71^{10}$  and 0.58 V vs Fc/Fc<sup>+</sup>, respectively (Figure 2).

Subsequent chemical oxidation of 2a/2b with [NO][SbF<sub>6</sub>] in CH<sub>3</sub>CN led to an immediate visible color change from yellow to blue and red, respectively. In the case of 2a, compound 4 was obtained along with its two-electron oxidized form 5 (Scheme 3). The formation of 4/5 indicates that the initially formed radical-dication 3a undergoes heteroleptic dimerization<sup>11</sup> between the *para*-position of the phenyl group and the para-position of the benzannulated CAAC-motif (relative to the N-substituent). This dimerization is also supported by the spin-density analysis of 3a at the UB3LYP-D3/Def2-SVP(CH<sub>3</sub>CN-SMD) level of theory,<sup>9</sup> which indicates that the unpaired spin is mostly delocalized over the carbonic carbon, ortho- and para-positions of the phenyl group, and nitrogen/benzene-ring (ortho- and para-positions with respect to the N-substituent) of the CAAC-motif (Figure 3 left). Reduction of the crude reaction mixture with elemental zinc led to the pure crystalline compound 4 in 28% yield. The single-crystal X-ray diffraction analysis unambiguously confirmed the formation of 4, proving the bond-connectivity to be the result of heteroleptic dimerization of radical-dication 3a (Figure 4).



**Figure 1.** Molecular structures of **2a** and **2b** at 40 and 50% probability levels, respectively. All hydrogens and counteranions are omitted for clarity. Selected bond lengths (Å) and bond angles (°) for **2a**: C1–C2 1.368(4), C1–C3 1.454(4), C1–C5 1.534(11); C2–C1–C3 121.8(2), C2–C1–C5 125.7(12), C3–C1–C5 111.5(11); and for **2b**: C1–C2 1.363(5), C1–C3 1.436(5), C1–C5 1.502(5); C2–C1–C3 120.9(3), C2–C1–C5 124.3(3), C3–C1–C5 114.7(3).



Figure 2. Cyclic voltammograms of 2a, 2b, 4, and 6 at a 100 mV/s scan rate in  $CH_3CN$  (0.1 mol/L  $Bu_4NPF_6$ ) at room temperature.

A cyclic voltammetry study confirmed that compound 4 can be subjected to a single two-electron oxidation at  $E_{1/2} = 0.52$  V vs Fc/Fc<sup>+</sup> (Figure 2), resulting in the formation of tetracation 5; this also supports the co-formation of 5 along with the initially formed 4 during the oxidation of 2a using [NO][SbF<sub>6</sub>]  $(E_{1/2} = 0.87$  V vs Fc/Fc<sup>+</sup> in CH<sub>3</sub>CN).<sup>12</sup> Subsequent chemical oxidation of 4 with two equivalents of [NO][SbF<sub>6</sub>] indeed leads to 5.<sup>13</sup> The UV/vis/NIR spectrum of the solution resulting from the chemical oxidation shows the longest wavelength absorption at  $\lambda_{max} = 686$  nm for 5 (Figure S47), which is considerably red-shifted in comparison to that of 4  $(\lambda_{max} = 393$  nm) (Figure S41). However, due to its limited stability in CH<sub>3</sub>CN, it could not be crystallized, even after several attempts.

In the case of 2b, compound 6 was obtained along with its one- and two-electron oxidized compounds 7 and 8, respectively (Scheme 4). The formation of 6/7/8 indicates

that the initially formed radical-dication 3b undergoes homoleptic dimerization<sup>14</sup> between the para-positions of the benzannulated CAAC-motif (relative to the N-substituent). This is also supported by the spin density  $plot^9$  of **3b**, in which the unpaired spin is delocalized as in the case of 3a (Figure 3 right); however, here the tBu-substituent blocks the paraposition carbon of the phenyl group from partaking in the dimerization. The strikingly distinct modes of dimerization observed for radical-dications 3a and 3b are hence defined by the para-substituent of the phenyl ring: H vs tBu. Such kind of substituent-dependent dimerization mode is well-known in the case of triarylmethyl radicals.<sup>15</sup> From the crude reaction mixture, radical-trication 7 was obtained after the workup. Compound 7 exhibits a broad EPR signal with unresolved hyperfine couplings, reflecting a highly delocalized spin system (Figure S133). Subsequently, compound 6 can be isolated by the reduction of 7 with elemental zinc. Compound 6 undergoes two separate one-electron oxidations at  $E_{1/2}$  = 0.62 and 0.75 V vs Fc/Fc<sup>+</sup> (Figure 2), resulting in the sequential formation of radical-trication 7 and tetracation 8;<sup>16</sup> this also supports the co-formation of 7 and 8 along with the initially formed 6 during the oxidation of 2b with [NO][SbF<sub>6</sub>]. Compounds 6/7/8 exhibit the longest wavelength absorptions in their UV/vis/NIR spectra at  $\lambda_{max} = 412$  ( $\varepsilon = 38200$  L  $mol^{-1}cm^{-1}$ ), 1510 ( $\varepsilon$  = 36700 L  $mol^{-1}cm^{-1}$ ), and 896 nm, respectively (Figure S61). Single-crystal X-ray analyses of 6/7/  $8^{17}$  unambiguously confirmed their formation, corroborating the bond-connectivity and, hence, homoleptic dimerization of radical-dication 3b (Figures 5, S87, and S88). The bond distance between the two phenylene rings of the central pbiphenylene bridge gradually decreases from 1.498(7) to 1.460(10) to 1.431(12) Å, indicating a progressive development of double-bond character upon sequential oxidation.

Subsequently, to realize the tetracationic Thiele's<sup>18</sup> and Chichibabin's<sup>19</sup> hydrocarbon analogues of carbon-centered diradicaloids, the cross-coupling reactions of NHC/CAAC-based carbodicarbene 1 were strategically performed with 1,4-diiodobenzene and 4,4'-diiodobiphenyl in the presence of catalytic amounts of Ni(COD)<sub>2</sub>/PPh<sub>3</sub>, obtaining **9a/9b** in 75

#### Scheme 3. Oxidation of 2a





**Figure 3.** Spin density plots of radical-dications **3a** and **3b** (isovalue of 0.004) computed at the UB3LYP-D3/Def2-SVP(CH<sub>3</sub>CN-SMD) level of theory. Two hexafluoroantimonate as counteranions and all hydrogens of both the radical-dications were omitted for clarity.

and 76% yields as yellow and orange-yellow crystalline solids, respectively (Scheme 5). The single-crystal X-ray diffraction analyses unambiguously proved their formation (Figures S89 and S90).

Cyclic voltammograms of **9a** and **9b** are overall chemically reversible in nature. However, in the case of **9a**, from the second scan onward, two additional oxidative waves were observed at  $E_{pa} = 0.36$  and 0.45 V, apart from  $E_{pa} = 0.60$  V vs Fc/Fc<sup>+</sup>, after the follow-up reduction at  $E_{pc} = 0.32$  V vs Fc/Fc<sup>+</sup> (Figure 6). In the case of **9b**, there was only one oxidative wave at  $E_{pa} = 0.63$  V vs Fc/Fc<sup>+</sup> and one reductive wave at  $E_{pc} =$ 0.48 V vs Fc/Fc<sup>+</sup>. The additional oxidative waves for **9a** are most likely due to the conformational change of the NHC/



Figure 4. Molecular structure of 4 at 50% probability level. All hydrogens, counteranions, and Et<sub>2</sub>O lattice solvent are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: C1–C2 1.382(7), C1–C3 1.440(6), C1–C9 1.492(6), C12–C15 1.481(6), C5–C6 1.369(7), C5–C7 1.448(7); C5–C21 1.496(8); and C2–C1–C3 121.4(4), C2–C1–C9 123.0(4), C3–C1–C9 115.5(4), C6–C5–C7 122.0(5), C6–C5–C21 112.0(5), C7–C5–C21 115.3(4).

CAAC-carbone scaffolds during its two-electron oxidation that is reflected in their solid-state molecular structures (vide infra). However, the impact of a similar conformational change of the NHC/CAAC-carbone scaffolds is not observable in the case of **9b** ( $E_{pa} = 0.63$  V and  $E_{pc} = 0.48$  V vs Fc/Fc<sup>+</sup>).

The two-electron reversible chemical oxidation of 9a/9b using two equivalents of [NO][SbF<sub>6</sub>] then led to the isolation

#### Scheme 4. Oxidation of 2b



of 10a/10b as dark-red and dark-blue crystalline solids in 65 and 60% yields, respectively (Scheme 5). The analyses of the molecular structures of 9a/10a (Figures S89 and 7 - left) revealed a decreasing C1–C5 distance from 1.513(9) to 1.380(16) Å due to the essentially quinoidal form of 10a. The bond length alternation (BLA) value of the central *p*-phenylene bridge in 10a is calculated to be 0.087 Å, compared to 0.10 Å in the case of the Thiele hydrocarbon.<sup>20</sup> Due to the

substantial disorder in both the cationic and the anionic parts of **10b** (Figure 7 - right), we abstain from discussing its metrical parameters. Notably, upon two-electron oxidation, we have observed a change in the NHC/CAAC-carbone scaffold's orientation in the solid-state molecular structures. In the case of **9a/9b**, the "CMe<sub>2</sub>" units of the CAAC-motifs appear inward relative to the central  $\pi$ -conjugated spacer (*p*-phenylene/*p*,*p*'-biphenylene bridge), whereas the orientation of the "CMe<sub>2</sub>"



Figure 5. Molecular structure of 6 at 50% probability level. All hydrogens, counteranions, and  $CH_3CN$  lattice solvent are omitted for clarity. Selected bond lengths (Å) and bond angles (deg) for 6: C1–C2 1.372(8), C1–C3 1.462(8), C1–C21 1.489(8), N1–C14 1.407(7), C11–C17 1.498(7); C20–N4 1.406(7); C2–C1–C3 120.6(5), C3–C1–C21 113.5(4), C2–C1–C21 125.3(5).

units of the CAAC-motifs of 10a/10b is outward relative to the central *p*-phenylene bridge.

Bands in the UV/vis/NIR absorption spectra of compounds **10a/10b** are red-shifted ( $\lambda_{max} = 497$  nm ( $\varepsilon = 38700$  L mol<sup>-1</sup>cm<sup>-1</sup>) and  $\lambda_{max} = 668$  nm ( $\varepsilon = 53300$  L mol<sup>-1</sup>cm<sup>-1</sup>)) (Figure 8 - left) in comparison to 9a/9b ( $\lambda_{max} = 385$  nm ( $\varepsilon = 38200$  L mol<sup>-1</sup>cm<sup>-1</sup>)) 38300 L mol<sup>-1</sup>cm<sup>-1</sup>) and  $\lambda_{max} = 368$  nm ( $\varepsilon = 39900$  L  $mol^{-1}cm^{-1}$ )), respectively (Figure S79). The resonances in the <sup>1</sup>H NMR spectrum of **10a** are well resolved at room temperature, including those of the central *p*-phenylene ring (Figure S25). In contrast, for 10b, the resonances of the central  $p_{,p'}$ -biphenylene ring are broad at room temperature and become sharper at lower temperatures (Figure S30). This indicates the presence of a thermally excited triplet-state population at room temperature for 10b. Indeed, compound 10a is EPR silent, as are the Thiele's hydrocarbon<sup>20</sup> and TCNQ.<sup>21</sup> Compound 10b, in contrast, shows an increasing EPR signal intensity with rising temperature (Figure 8-center). Fitting of the temperature-dependent double-integral intensity to the Bleaney-Bowers model gives a singlet-triplet gap of 2J  $= -1250 \text{ cm}^{-1} (\Delta E_{\text{S-T}} = -14.9 \text{ kJ/mol}) (\text{Figure 8 - right}),$ suggesting a singlet ground state.



Figure 6. Cyclic voltammograms of 9a and 9b at a 100 mV/s scan rate in CH<sub>3</sub>CN (0.1 mol/L Bu<sub>4</sub>NPF<sub>6</sub>) at room temperature.

This is also supported by the quantum chemical calculations at the UB3LYP-D3/Def2-SVP (CH<sub>3</sub>CN-SMD) level of theory; it reveals a closed-shell singlet ground state for 10a with  $\Delta E_{\text{S-T}}$ = -30.9 kJ/mol, whereas 10b has an open-shell singlet ground state with a close-lying triplet at  $\Delta E_{S-T} = -4.9 \text{ kJ/mol}$  (Table \$12).<sup>9</sup> This kind of discrepancy, the calculated singlet-triplet gap, which is underestimated compared to the results obtained by VT-EPR spectroscopy ( $\Delta E_{\text{S-T}} = -14.9 \text{ kJ/mol}$ ), has been previously known for the ionic diradicaloid systems.<sup>22</sup> Notably, the calculated biradical character index ( $\gamma$ ) of **10b** is 0.40, which is higher than that of 8 (0.34) and 5 (0.36).<sup>23</sup> Compound 10b is quite stable, with a half-life of 19 days in CH<sub>3</sub>CN under ambient air conditions (Figures S81 and S82); however, this is shorter than that of the oxindolyl-based Chichibabin's analogue (highly stable, no indication of degradation even after 7 days)<sup>19d</sup> and sulfone-functionalized Chichibabin's analogues  $(t_{1/2} = 41, 52, \text{ and } 70 \text{ days})^{19\text{f}}$  but significantly longer than that of the acyclic diaminocarbenebased Chichibabin's hydrocarbon  $(t_{1/2} < 1 \text{ min})$ .<sup>19g</sup> Compounds 10a/10b exhibit a chemically reversible redox behavior and are reduced to 9a/9b, respectively, upon treatment with elemental zinc, showcasing their electron-deficient nature.<sup>24</sup>





Figure 7. Molecular structures of 10a (left) and 10b (right) at 50 and 40% probability levels, respectively. All hydrogens and counteranions are omitted for clarity.



**Figure 8.** UV/vis/NIR spectra of **10a** and **10b** in CH<sub>3</sub>CN at room temperature (left). Variable temperature X-band EPR spectra of **10b** in acetonitrile between 240 and 300 K (center) and temperature dependence of the double-integral EPR intensity (right). Circles ( $\bigcirc$ ) represent the experimental results, and the red line corresponds to the fit with the Bleaney–Bowers equation. The EPR signal is centered around a *g* value of 2.0027.

## CONCLUSIONS

In conclusion, we have developed a nickel(0)-catalyzed crosscoupling of NHC/CAAC-carbodicarbene as a donor-stabilized atomic carbon equivalent with aryl chlorides/bromides/ iodides. The resulting aryl-functionalized cationic carbodicarbene derivatives are notably electron-rich and prone to oneelectron oxidation under the formation of radical-dications, which results in distinct modes of radical-radical dimerization based on the aryl substituents. Moreover, this led to the synthesis of carbon- and nitrogen/nitrogen-centered diradicaloids. Based on these findings, we have also rationally synthesized p-phenylene- and p,p'-biphenylene-bridged tetracationic carbon/carbon-centered electron-deficient diradicaloids. The electronic structure is tuned by the substantial influence of the  $\pi$ -conjugated spacer mirrored in the presence/ absence of a triplet population. The results emphasize the unique reactivity of carbodicarbenes, specifically herein with regard to their cross-coupling with different aryl halides. The developed procedures constitute a modular methodology for the synthesis of various electron-deficient diradicaloids. This study will thus enrich the diradicaloid chemistry in general, and we are, in this context, currently engaged in developing these concepts further. Moreover, all these electron-deficient diradicaloids have potential to be used as *p*-dopants in organic semiconductors.<sup>25</sup>

## ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c08876.

Experimental section, plots of NMR spectra for new compounds, and complete details of computational calculations (PDF)

## Accession Codes

CCDC 2333307–2333314 and 2340820–2340821 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data\_request/cif, or by emailing data\_request@ccdc.cam.ac. uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

# AUTHOR INFORMATION

### Corresponding Authors

- Gopalan Rajaraman Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India; orcid.org/0000-0001-6133-3026; Email: rajaraman@ chem.iitb.ac.in
- Holger Braunschweig Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; orcid.org/0000-0001-9264-1726; Email: h.braunschweig@uni-wuerzburg.de

- Carola Schulzke Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany; orcid.org/ 0000-0002-7530-539X; Email: carola.schulzke@unigreifswald.de
- Anukul Jana Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India; orcid.org/0000-0002-1657-1321; Email: ajana@tifrh.res.in

#### Authors

- Vasu Malhotra Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India; orcid.org/0000-0002-6165-5188
- Benedict J. Elvers Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany; Ocid.org/ 0000-0002-4627-6905
- Ramapada Dolai Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India
- Nicolas Chrysochos Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India
- Siva Sankar Murthy Bandaru Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany; orcid.org/0000-0003-4294-8521
- **Tejaswinee Gangber** Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India
- Neethinathan Johnee Britto Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
- Ivo Krummenacher Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany; Orcid.org/0000-0001-9537-1506

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c08876

### Notes

The authors declare the following competing financial interest(s): We are working to file a patent related to the findings of this manuscript.

## ACKNOWLEDGMENTS

We acknowledge generous support of the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4007 and SERB (CRG/2023/004314), India. G.R. would like to thank SERB (SB/SJF/2019-20/12 and CRG/2022/001697) for funding.

# DEDICATION

Dedicated to Indian Chemical Society Centenary.

# REFERENCES

(1) Selected reviews are: (a) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. *Chem. Rev.* 2018, 118, 2249–2295. (b) Suzuki, A. Cross-Coupling Reactions of Organoboranes: An Easy Way to Construct C–C Bonds (Nobel Lecture). *Angew. Chem., Int. Ed.* 2011, 50, 6722–6737. (c) Magano, J.; Dunetz, J. R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. *Chem. Rev.* 2011, 111, 2177–2250. (d) Corbet, J.-P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. *Chem. Rev.* 2006, 106, 2651–2710.

(2) Selected reviews are: (a) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes. *Chem. Rev.* 2017, *117*, 9333-9403. (b) Boyarskiy, V. P.;

Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of Arenes and Heteroarenes with Alkynes. *Chem. Rev.* **2016**, *116*, 5894– 5986. (c) Chinchilla, R.; Nájera, C. Recent Advances in Sonogashira Reactions. *Chem. Soc. Rev.* **2011**, *40*, 5084–5121.

(3) (a) Ghadwal, R. S.; Reichmann, S. O.; Herbst-Irmer, R. Palladium-Catalyzed Direct C2-Arylation of an N-Heterocyclic Carbene: An Atom-Economic Route to Mesoionic Carbene Ligands. *Chem.- Eur. J.* 2015, 21, 4247–4251. (b) Ho, N. K. T.; Neumann, B.; Stammler, H.-G.; Menezes da Silva, V. H.; Watanabe, D. G.; Braga, A. A. C.; Ghadwal, R. S. Nickel-Catalysed Direct C2-Arylation of N-Heterocyclic Carbenes. *Dalton Trans.* 2017, 46, 12027–12031.
(c) Rottschäfer, D.; Neumann, B.; Stammler, H.-G.; van Gastel, M.; Andrada, D. M.; Ghadwal, R. S. Crystalline Radicals Derived from Classical N-Heterocyclic Carbenes. *Angew. Chem., Int. Ed.* 2018, *57*, 4765–4768.

(4) (a) Tonner, R.; Frenking, G. C(NHC)<sub>2</sub>: Divalent Carbon(0) Compounds with N-Heterocyclic Carbene Ligands-Theoretical Evidence for a Class of Molecules with Promising Chemical Properties. Angew. Chem., Int. Ed. 2007, 46, 8695–8698. (b) Tonner, R.; Oxler, F.; Neumüller, B.; Petz, W.; Frenking, G. Carbodiphosphoranes: The Chemistry of Divalent Carbon(0). Angew. Chem., Int. Ed. 2006, 45, 8038–8042.

(5) Selected references are: (a) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Synthesis of an Extremely Bent Acyclic Allene (A "Carbodicarbene"): A Strong Donor Ligand. Angew. Chem., Int. Ed. 2008, 47, 3206-3209. (b) Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Coordination Chemistry of Ene-1,1diamines and a Prototype "Carbodicarbene. Angew. Chem., Int. Ed. 2008, 47, 3210-3214. (c) Su, W.; Pan, S.; Sun, X.; Wang, S.; Zhao, L.; Frenking, G.; Zhu, C. Double Dative Bond between Divalent Carbon(0) and Uranium. Nat. Commun. 2018, 9, 4997. (d) Aweke, B. S.; Yu, C.-H.; Zhi, M.; Chen, W.-C.; Yap, G. P. A.; Zhao, L.; Ong, T.-G. A Bis-(Carbone) Pincer Ligand and Its Coordinative Behavior toward Multi-Metallic Configurations. Angew. Chem., Int. Ed. 2022, 61, e202201884. (e) Hollister, K. K.; Molino, A.; Breiner, G.; Walley, J. E.; Wentz, K. E.; Conley, A. M.; Dickie, D. A.; Wilson, D. J. D.; Gilliard, R. J., Jr. Air-Stable Thermoluminescent Carbodicarbene-Borafluorenium Ions. J. Am. Chem. Soc. 2022, 144, 590-598.

(6) Dolai, R.; Kumar, R.; Elvers, B. J.; Pal, P. K.; Joseph, B.; Sikari, R.; Nayak, M. K.; Maiti, A.; Singh, T.; Chrysochos, N.; Jayaraman, A.; Krummenacher, I.; Mondal, J.; Priyakumar, U. D.; Braunschweig, H.; Yildiz, C. B.; Schulzke, C.; Jana, A. Carbodicarbenes and Striking Redox Transitions of Their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. *Chem. -Eur. J.* **2023**, *29*, e202202888.

(7) (a) Himmel, D.; Krossing, I.; Schnepf, A. Dative Bonds in Main-Group Compounds: A Case for Fewer Arrows! *Angew. Chem., Int. Ed.* **2014**, 53, 370–374. (b) Frenking, G. Dative Bonds in Main-Group Compounds: A Case for More Arrows! *Angew. Chem., Int. Ed.* **2014**, 53, 6040–6046.

(8) (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. CO Fixation to Stable Acyclic and Cyclic Alkyl Amino Carbenes: Stable Amino Ketenes with a Small HOMO-LUMO Gap. *Angew. Chem., Int. Ed.* **2006**, *45*, 3488–3491. (b) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. *Science* **2007**, *316*, 439–441.

(9) See the Supporting Information for experimental details, analytical data, NMR spectra, UV/Vis/NIR absorption spectra, electrochemistry details, X-ray crystallographic details, details of EPR spectroscopy, and details of quantum chemical calculations.

(10) The cyclic voltammogram of **2a** is the average of the second and third scans at 100 mV/s at room temperature, where the presence of shoulder peaks at  $E_{\rm pc} = 0.53$  and  $E_{\rm pa} = 0.60$  V vs Fc/Fc<sup>+</sup> most likely represent the redox behavior of in situ formed **4**, originating from the oxidation of **2a**. In the first cycle, no such shoulder peak is observed at  $E_{\rm pa} = 0.60$  V vs Fc/Fc<sup>+</sup> (Figure S94).

(11) See the related heteroleptic dimerization based on triphenylmethyl radical and related system: (a) Lankamp, H.; Nauta, W. T.;

MacLean, C. A New Interpretation of the Monomer-Dimer Equilibrium of Triphenylmethyl- and Alkylsubstituted-Diphenyl Methyl-Radicals in Solution. *Tetrahedron Lett.* **1968**, *9*, 249–254. (b) Mandal, D.; Sobottka, S.; Dolai, R.; Maiti, A.; Dhara, D.; Kalita, P.; Narayanan, R. S.; Chandrasekhar, V.; Sarkar, B.; Jana, A. Direct access to 2-aryl substituted pyrrolinium salts for carbon centre based radicals *without* pyrrolidine-2-ylidene *alias* cyclic(alkyl)(amino)carbene (CAAC) as a precursor. *Chem. Sci.* **2019**, *10*, 4077–4081.

(12) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877–910.

(13) Compound 5 represents the class of not-yet-isolated carbon/ nitrogen-centered heteronuclear diradicaloids.<sup>26</sup> Indeed, it exhibits triplet population at room temperature and the variable temperature-EPR study reveals a singlet ground state with  $\Delta E_{S-T} = -8.7$  kJ/mol (Figure S132). This is also supported by the quantum chemical calculations which suggest closed-shell singlet as the ground state with singlet-triplet gap  $\Delta E_{S-T} = -8.6$  kJ/mol (Table S12).<sup>9</sup>

(14) See the related dimerization based on triarylamine radicalcation: Zheng, X.; Wang, X.; Qiu, Y.; Li, Y.; Zhou, C.; Sui, Y.; Li, Y.; Ma, J.; Wang, X. One-Electron Oxidation of an Organic Molecule by  $B(C_6F_5)_{3}$ ; Isolation and Structures of Stable Non-*para*-Substituted Triarylamine Cation Radical and Bis(Triarylamine) Dication Diradicaloid. *J. Am. Chem. Soc.* **2013**, 135, 14912–14915.

(15) (a) Müller, E.; Moosmayer, A.; Rieker, A.; Scheffler, K. Sesquixanthydryl, ein "ebenes" triarylmethylradikal. Tetrahedron Lett. 1967, 8, 3877-3880. (b) Staab, H. A.; Brettschneider, H.; Brunner, H. Struktur Der Triarymethyl-dimeren. Chem. Ber. 1970, 103, 1101-1106. (c) Kahr, B.; Van Engen, D.; Mislow, K. Length of the Ethane Bond in Hexaphenylethane and Its Derivatives. J. Am. Chem. Soc. 1986, 108, 8305-8307. (d) Grimme, S.; Schreiner, P. R. Steric Crowding Can Stabilize a Labile Molecule: Solving the Hexaphenylethane Riddle. Angew. Chem., Int. Ed. 2011, 50, 12639-12642. (e) Jang, S.-H.; Gopalan, P.; Jackson, J. E.; Kahr, B. Jacobson and Heintschel Peroxides. Angew. Chem., Int. Ed. 1994, 33, 775-777. (f) Yokoi, H.; Hiroto, S.; Shinokubo, H. Reversible  $\sigma$ -Bond Formation in Bowl-Shaped  $\pi$ -Radical Cations: The Effects of Curved and Planar Structures. J. Am. Chem. Soc. 2018, 140, 4649-4655. (g) Takemasa, Y.; Nozaki, K. Hexakispyrazolylethane: New Strategy for Stabilization of Hexaarylethane. Chem. -Eur. J. 2024, 30, e202303575.

(16) Compound 8 represents the nitrogen analogue of Chichibabin's hydrocarbon.<sup>27</sup> It exhibits triplet population at room temperature, and the variable temperature-EPR study reveals a singlet ground state with  $\Delta E_{\text{S-T}} = -10.9 \text{ kJ/mol}$  (Figure S134). This is also supported by the quantum chemical calculations which suggest singlet as the ground state with an underestimated<sup>22</sup> close-lying triplet state at  $\Delta E_{\text{S-T}} = -3.7 \text{ kJ/mol}$  (Table S12).<sup>9</sup>

(17) These are rarely described in the literature but not unprecedented; see for instance: Haase, W. Die Kristall- Und Molekülstruktur von Dicäsium- $\mu$ -oxo-decafluorodiantimonat, Cs<sub>2</sub>[Sb<sub>2</sub>F<sub>10</sub>O]. *Chem. Ber.* **1973**, *106*, 41–47. In the crystal structure of compound **8**, two [Sb<sub>2</sub>F<sub>10</sub>O]<sup>2-</sup> dianions were found to be the counteranions.

(18) Selected references are: (a) Thiele, J.; Balhorn, H. Ueber einen chinoiden Kohlenwasserstoff. Ber. Dtsch. Chem. Ges. 1904, 37, 1463-1470. (b) Okamoto, Y.; Tanioka, M.; Muranaka, A.; Miyamoto, K.; Aoyama, T.; Ouyang, X.; Kamino, S.; Sawada, D.; Uchiyama, M. Stable Thiele's Hydrocarbon Derivatives Exhibiting near-Infrared Absorption/Emission and Two-Step Electrochromism. J. Am. Chem. Soc. 2018, 140, 17857-17861. (c) Maiti, A.; Stubbe, J.; Neuman, N. I.; Kalita, P.; Duari, P.; Schulzke, C.; Chandrasekhar, V.; Sarkar, B.; Jana, A. CAAC-Based Thiele and Schlenk Hydrocarbons. Angew. Chem., Int. Ed. 2020, 59, 6729-6734. (d) Mahata, A.; Chandra, S.; Maiti, A.; Rao, D. K.; Yildiz, C. B.; Sarkar, B.; Jana, A. α,α'-Diamino-p-Quinodimethanes with Three Stable Oxidation States. Org. Lett. 2020, 22, 8332-8336. (e) Jana, S.; Elvers, B. J.; Pätsch, S.; Sarkar, P.; Krummenacher, I.; Nayak, M. K.; Maiti, A.; Chrysochos, N.; Pati, S. K.; Schulzke, C.; Braunschweig, H.; Yildiz, C. B.; Jana, A. Air and Moisture Stable para- and ortho-Quinodimethane Derivatives Derived from bis-N-Heterocyclic Olefins. Org. Lett. 2023, 25, 1799-1804.

(f) Punzi, A.; Dai, Y.; Dibenedetto, C. N.; Mesto, E.; Schingaro, E.; Ullrich, T.; Striccoli, M.; Guldi, D. M.; Negri, F.; Farinola, G. M.; Blasi, D. Dark State of the Thiele Hydrocarbon: Efficient Solvatochromic Emission from a Nonpolar Centrosymmetric Singlet Diradicaloid. J. Am. Chem. Soc. 2023, 145, 20229–20241. (g) Liu, C.-H.; He, Z.; Ruchlin, C.; Che, Y.; Somers, K.; Perepichka, D. F. Thiele's Fluorocarbons: Stable Diradicaloids with Efficient Visible-to-Near-Infrared Fluorescence from a Zwitterionic Excited State. J. Am. Chem. Soc. 2023, 145, 15702–15707. (h) Banachowicz, P.; Das, M.; Kruczała, K.; Siczek, M.; Sojka, Z.; Kijewska, M.; Pawlicki, M. Breaking Global Diatropic Current to Tame Diradicaloid Character: Thiele's Hydrocarbon Under Macrocyclic Constraints. Angew. Chem., Int. Ed. 2024, 63, e202400780.

pubs.acs.org/JACS

(19) Selected references are: (a) Tschitschibabin, A. E. Über einige phenylierte Derivate des p, p-Ditolyls. Ber. Dtsch. Chem. Ges. 1907, 40, 1810-1819. (b) Zeng, Z.; Sung, Y. M.; Bao, N.; Tan, D.; Lee, R.; Zafra, J. L.; Lee, B. S.; Ishida, M.; Ding, J.; López Navarrete, J. T.; Li, Y.; Zeng, W.; Kim, D.; Huang, K.-W.; Webster, R. D.; Casado, J.; Wu, J. Stable Tetrabenzo-Chichibabin's Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms. J. Am. Chem. Soc. 2012, 134, 14513-14525. (c) Sbargoud, K.; Mamada, M.; Marrot, J.; Tokito, S.; Yassar, A.; Frigoli, M. Diindeno[1,2-b:2',1'-n]Perylene: A Closed Shell Related Chichibabin's Hydrocarbon, the Synthesis, Molecular Packing, Electronic and Charge Transport Properties. Chem. Sci. 2015, 6, 3402-3409. (d) Wang, J.; Xu, X.; Phan, H.; Herng, T. S.; Gopalakrishna, T. Y.; Li, G.; Ding, J.; Wu, J. Stable Oxindolyl-Based Analogues of Chichibabin's and Müller's Hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 14154-14158. (e) Majewski, M. A.; Chmielewski, P. J.; Chien, A.; Hong, Y.; Lis, T.; Witwicki, M.; Kim, D.; Zimmerman, P. M.; Stępień, M. 5,10-Dimesityldiindeno [1,2a:2',1'-i]Phenanthrene: A Stable Biradicaloid Derived from Chichibabin's Hydrocarbon. Chem. Sci. 2019, 10, 3413-3420. (f) Zhou, Z.; Yang, K.; He, L.; Wang, W.; Lai, W.; Yang, Y.; Dong, Y.; Xie, S.; Yuan, L.; Zeng, Z. Sulfone-Functionalized Chichibabin's Hydrocarbons: Stable Diradicaloids with Symmetry Breaking Charge Transfer Contributing to NIR Emission beyond 900 Nm. J. Am. Chem. Soc. 2024, 146, 6763-6772. (g) Maiti, A.; Chandra, S.; Sarkar, B.; Jana, A. Acyclic Diaminocarbene-Based Thiele, Chichibabin, and Müller Hydrocarbons. Chem. Sci. 2020, 11, 11827-11833. (h) Chang, X.; Arnold, M. E.; Blinder, R.; Zolg, J.; Wischnat, J.; van Slageren, J.; Jelezko, F.; Kuehne, A. J. C.; von Delius, M. A Stable Chichibabin Diradicaloid with Near-Infrared Emission. Angew. Chem., Int. Ed. 2024, 63, e202404853.

(20) Montgomery, L. K.; Huffman, J. C.; Jurczak, E. A.; Grendze, M. P. The molecular structures of Thiele's and Chichibabin's hydrocarbons. J. Am. Chem. Soc. **1986**, 108, 6004–6011.

(21) Acker, D. S.; Hertler, W. R. Substituted Quinodimethans I. Preparation and Chemistry of 7,7,8,8-Tetracyanoquinodimethan. *J. Am. Chem. Soc.* **1962**, *84*, 3370–3374.

(22) (a) Chen, C.; Ruan, H.; Feng, Z.; Fang, Y.; Tang, S.; Zhao, Y.; Tan, G.; Su, Y.; Wang, X. Crystalline Diradical Dianions of Pyrene-Fused Azaacenes. *Angew. Chem., Int. Ed.* 2020, *59*, 11794–11799.
(b) Maiti, A.; Zhang, F.; Krummenacher, I.; Bhattacharyya, M.; Mehta, S.; Moos, M.; Lambert, C.; Engels, B.; Mondal, A.; Braunschweig, H.; Ravat, P.; Jana, A. Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a *p*-Phenylene Bridge. *J. Am. Chem. Soc.* 2021, *143*, 3687–3692.

(23) (a) Yamaguchi, K. The Electronic Structures of Biradicals in the Unrestricted Hartree-Fock Approximation. *Chem. Phys. Lett.* **1975**, *33*, 330–335. (b) Domínguez, I. B.; Canola, S.; Jolín, V. H.; Navarrete, J. T. L.; García, J. C. S.; Negri, F.; Delgado, M. C. R Tuning the Diradical Character of Indolocarbazoles: Impact of Structural Isomerism and Substitution Position. J. Phys. Chem. Lett. **2022**, *13*, 6003–6010. (c) Bodzioch, A.; Obijalska, E.; Jakubowski, R.; Celeda, M.; Gardias, A.; Trzybiński, D.; Tokarz, P.; Szczytko, J.; Woźniak, K.; Kaszyński, P. Electronic and Magnetic Interactions in 6-Oxoverdazyl Diradicals: Connection through N(1) vs C(3) Revisited. J. Org. Chem. **2024**, *89*, 6306–6321.

(24) The electron-deficient carbon/carbon-centered diradicaloids are mostly known with cyano-substituents, such as in: Zeng, Z.; Ishida, M.; Zafra, J. L.; Zhu, X.; Sung, Y. M.; Bao, N.; Webster, R. D.; Lee, B. S.; Li, R.-W.; Zeng, W.; Li, Y.; Chi, C.; López Navarrete, J. T.; Ding, J.; Casado, J.; Kim, D.; Wu, J. Pushing Extended *p*-Quinodimethanes to the Limit: Stable Tetracyano-Oligo(*N*-Annulated Perylene)Quinodimethanes with Tunable Ground States. *J. Am. Chem. Soc.* **2013**, *135*, 6363–6371.

(25) Suh, E. H.; Kim, S. B.; Jung, J.; Jang, J. Extremely Electron-Withdrawing Lewis-Paired CN Groups for Organic p-Dopants. *Angew. Chem., Int. Ed.* **2023**, *62*, e202304245.

(26) Bobet, A.; Cuadrado, A.; Fajarí, L.; Sirés, I.; Brillas, E.; Almajano, M. P.; Jankauskas, V.; Velasco, D.; Juliá, L. Bipolar Charge Transport in Organic Electron Donor-Acceptor Systems with Stable Organic Radicals as Electron-Withdrawing Moieties. *J. Phys. Org. Chem.* **2019**, *32*, e3974.

(27) (a) Kamada, K.; Fuku-en, S.-I.; Minamide, S.; Ohta, K.; Kishi, R.; Nakano, M.; Matsuzaki, H.; Okamoto, H.; Higashikawa, H.; Inoue, K.; Kojima, S.; Yamamoto, Y. Impact of Diradical Character on Two-Photon Absorption: Bis(Acridine) Dimers Synthesized from an Allenic Precursor. J. Am. Chem. Soc. 2013, 135, 232–241. (b) Tan, G.; Wang, X. Isolable Bis(triarylamine) Dications: Analogues of Thiele's, Chichibabin's, and Müller's Hydrocarbons. Acc. Chem. Res. 2017, 50, 1997–2006.