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A B S T R A C T   

The copper (1–2)a and the silver (1–2)b complexes of the super bulky N-heterocyclic carbene (NHC) variants 
namely, [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]MX [where, M = Cu; X = Cl (1a), Br (2a): M = Ag; X =
Cl (1b), Br (2b)] effectively facilitated the A3 coupling reaction of diverse amine, aldehyde, and acetylene 
substrates yielding a wide array of propargylamines in moderate to good (ca. 24− 89 %) yields. A metal bound 
acetylide species, [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]M(C–––CPh) [where, M = Cu (A), Ag (B)] has 
been identified as a key catalytic species by mass spectrometric studies. The Density functional theory (DFT) 
studies further revealed the rate-limiting step as the formation of the C-C coupling transition state (TS2) from the 
silver-acetylide species (Int2). The super bulky ligand framework plays a pivotal role in this step by anchoring 
the protonated Schiff’s base imine in the vicinity of the alkyne through several non-covalent-interactions, 
including a strong C–H•••O interaction, thereby reducing the corresponding kinetic barrier leading to an effi
cient catalytic transformation as reflected in the high propargylamine yields. Furthermore, the catalytic utility of 
the coupling reaction was further extended by synthesising pargyline, which is a monoamine oxidase B (MAO-B) 
inhibitor drug molecule, in a one-pot manner and that to in a gram-scale synthesis.   

1. Introduction 

Many important nitrogen-containing biologically active pharma
ceutical and natural products like, Selegiline[1–3] and Rasagiline [4], 
used in the treatment of early symptoms of Parkinson’s disease, and 
Ladostigil [5,6], a neuroprotective agent, contain propargyl amine core 
[7]. Hence, the interest in convenient access to propargyl amine scaf
folds has seen a surge recently [8,9]. In this regard, the multi-component 
reaction of the type, Aldehyde− Amine− Acetylene (A3) coupling, has 
gained prominence, particularly for their step-efficient green approach 
involving the generation of environmentally benign water as the only by 
product of the reaction [10–14]. The ease of the A3 coupling is under
scored when compared to the traditional routes for the propargyl amine 
synthesis, which proceed by nucleophilic addition of metal acetylide to 
an imine, requiring multi-step sequences, with the use of the 

stoichiometric amount of air and moisture-sensitive reagents, low tem
perature and anhydrous conditions [15]. 

All three substrates, aldehyde, alkyne and amine, of the A3 coupling, 
being electron-rich and simultaneously unsaturated, require the assis
tance of a Lewis-acidic transition metal in bringing about the three- 
component coupling. Consequently, a large number of transition 
metals in combinations with different ligand types, including that of the 
catalytically phenomenal N-heterocyclic carbenes, have been explored 
for the three-component A3 coupling over the past decade [11,12]. 
However, the influence of super bulky variants of the N-heterocyclic 
carbenes in A3 coupling remains to be seen. The super bulky N-hetero
cyclic carbenes, with its deep protective pocket around the catalytically 
active metal center, provide amenable conditions for substrate activa
tion and subsequent catalysis [16–18]. The challenges associated with 
the synthesis of super bulky N-heterocyclic carbenes, arising from 
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multi-step sequences, severely limit their use in catalysis exploration 
studies [19–21]. Promising results in a wide array of catalytic trans
formations have been observed with super bulky N-heterocyclic car
benes. [22–26] 

With our interest in the utility of N-heterocyclic carbenes in 
biomedical applications[27,28] and in chemical catalysis [29–31], we 
became interested in pursuing Aldehyde− Amine− Acetylene (A3) 
coupling [32], in line with our efforts in studying tandem and 
multi-component reactions [33–39]. We rationalized that because of its 
deep pockets, the super bulky N-heterocyclic carbenes would provide 
conducive environment for the catalysis of the three-component 
reactions. 

The coinage metals, i.e. silver [40], copper [41], and gold[42] have 
consistently attracted significant attention due to their exceptional 
capability to activate carbon-carbon unsaturated bonds. This unique 
ability enhances the reactivity of alkynes, effectively enabling them to 
function as robust nucleophiles in the A3 coupling type reactions. 
Furthermore, within the domain of A3 coupling, the theoretical explo
ration of transition metal carbene complexes has been reported notably 
limited, although some studies have been reported (see, for example, 
[43]). The DFT studies on A3 coupling mediated by (NHC)gold com
plexes revealed the impact of counter ions on catalytic behaviour[44] 
and catalytic enhancement facilitated by an acidic environment [45]. 
Additionally, the investigations of the silver mediated A3 coupling 
showed the effect of imine groups on enhancing catalytic activity [46]. 
The research on Cu catalysts has highlighted the peripheral stabilization 
of transition states via a π-type interaction [47]. 

Here in the manuscript, we report copper (1− 2)a and silver (1− 2)b 
complexes of super bulky N-heterocyclic carbenes (Fig. 1) that effi
ciently catalyse the Aldehyde− Amine− Acetylene (A3) coupling yielding 
different propargyl amine derivatives in moderate to good yields. Hence, 
to elucidate the electronic structure, bonding mechanisms, and reac
tivity patterns of the super bulky copper (1–2)a and silver (1–2)b 
complexes in the context of A3 coupling, meticulous Density Functional 
Theory (DFT) analyses have been systematically conducted. The DFT 
calculations provide valuable insights on (i) the intricate interplays be
tween electronic and steric factors that collaborate to heighten the 
reactivity of these super bulky copper and silver NHC complexes, (ii) the 
lowest energy pathway through which the A3 coupling proceeds, and 
(iii) the rate-limiting step of this reaction, and how does the super bulky 
NHC ligand design help in alleviate the energy penalty of the rate- 
limiting step. 

2. Results and discussion 

Super bulky imidazole-based N-heterocyclic carbene ligand pre
cursors, namely [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]X [where, X 
= Cl (1), Br (2)] were synthesized (Scheme 1) from the reaction of 2,4,6- 
tribenzhydrylaniline, glyoxal and formaldehyde [17,23]. As expected, 
the characteristic NCHN resonance (δ) appeared downfield shifted [ca. 

13.00 ppm (1); ca.12.39 ppm (2)] in the 1H NMR spectrum (Supporting 
Information Figures S27 and S48). 

The copper halide (1–2)a complexes were synthesized by the reac
tion of the super bulky imidazolium halide precursors (1) or (2) with 
Cu2O in ca. 29− 37 % yield. The Ccarbene− Cu moiety resonance at 180.5 
ppm (2a) in the 13C{1H} NMR concurs well with related structurally 
characterized analogs namely [1,3-{(2,6-Ph2CH)2–4-Me-C6H2}imida
zol-2-ylidene]CuCl (180.7 ppm) [25], [1,3-{(2, 
6-Ph2CH)2–4–OCH3-C6H2}imidazol-2-ylidene]CuCl (181.6 ppm) [24], 
[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]CuCl (180.4 ppm) 
[23], [1,3-{(2,6-Ph2CH)2–4-Ph3 C6H2) imidazol-2-ylidene}CuCl (180.1 
ppm)[23] (Table 1 and Supporting Information Figures S36, S57). 

The molecular structure of (2a) as determined by single crystal X-ray 
diffraction technique (Fig. 2), is isostructural with the reported copper 
chloro (1a) analog [23]. The Ccarbene-Cu bond distance of 1.886(5) Å 
(2a) is in good agreement with other structurally characterized exam
ples (Table1), [1,3-{(2,6-Ph2CH)2–4-Me-C6H2}imidazol-2-ylidene]CuCl 
[(1.867(3) Å][25] [1,3-{(2,6-Ph2CH)2–4–OCH3-C6H2}imidazol-2-yli
dene]CuCl [1.875(2) Å] [24], [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazo
l-2-ylidene]CuCl [1.885(2) Å] [23], [1,3-{(2,6-Ph2CH)2–4-Ph3C6H2) 
imidazol-2-ylidene}CuCl [1.8885(18) Å] [23]. The longer Cu-Br bond 
distance of 2.2129(9) Å in (2a) in comparison to the Cu–Cl bond dis
tances of ca. 2.0944(9)− 2.1004(7) Å in similar structurally character
ized examples, is attributed to a larger covalent radius of Br (1.20 Å) to 
that of Cl (1.02 Å) [48]. 

The analogous reaction of the imidazolium chloride salt (1) and the 
imidazolium bromide salt (2) with Ag2O yielded the silver halide com
plexes, namely [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]AgX 
[where, X = Cl (1b), Br (2b)]. Here too, in the 13C{1H} NMR spectrum, 
the characteristic Ccarbene− Ag resonances (δ), were observed at ca. 184.4 
ppm for 1b and ca. 184.5 ppm for 2b along the lines of ca. 184.2 ppm for 
[1,3-{(2,6-Ph2CH)2–4-Me-C6H2}imidazol-2-ylidene]AgCl [19] and ca. 
185.8 ppm for [1,3-{(2,6-Ph2CH)2–4–OCH3-C6H2}imidazol-2-ylidene] 
AgCl[24] (Table 2 and Supporting Information Figures S43-S44, 
S64-S65). 

The silver chloro (1b) and bromo (2b) derivatives are isostructural 
with the copper bromo (2a) complex as observed by the single crystal X- 
ray diffraction studies. The Ccarbene− Ag bond distances of 2.067(2) Å 
(1b) (Fig. 3) and 2.079(4) Å (2b) (Fig. 4) are longer than the copper 
analog [1.886(5) Å (2a)] due a larger covalent radii of Ag (1.46 Å) as 
compared with Cu (1.29 Å) [49]. The Ccarbene− Ag bond distances of 
2.067(2) Å (1b) and 2.079(4) Å (2b) compares well with the analogous 
structurally characterized examples, namely, [1,3-{(2, 
6-Ph2CH)2–4-Me-C6H2}imidazol-2-ylidene]AgCl [2.081(2) Å][19] and 
[1,3-{(2,6-Ph2CH)2–4–OCH3-C6H2}imidazol-2-ylidene]AgCl [2.0803(3) 
Å][24] (Table 2). Likewise, the Ag− Cl bond distance in 1b [2.3027(7) 
Å] is slightly shorter than the Ag− Br bond distance in 2b [2.3988(5) Å] 
due to a covalent radii difference between Cl (1.02 Å) and Br (1.20 Å) 
atoms [48]. 

2.1. Catalysis studies 

Significantly enough, all of the copper (1–2)a and the silver (1–2)b 
complexes efficiently performed the tandem A3 coupling of the diverse 
secondary amines, aliphatic as well as aromatic aldehydes, and acety
lene substrates, giving access to various propargylamine compounds. In 
particular amines, aldehyde and acetylene substrates, when taken in ca. 
1 : 1 : 1 ratio, and upon treatment with 1 mol % of the copper (1–2)a and 
the silver (1–2)b complexes in toluene at 100 ◦C for 16 h yielded the 
desired propargylamines (3− 27) in moderate to good isolated yields, ca. 
24− 89 % (Table 3). The substrate variation study revealed that sec
ondary amines both cyclic (piperidine, morpholine, pyrrolidine) as well 
as the acyclic ones (dicyclohexyl, diisopropyl, diethyl etc.), phenyl 
acetylene with different substituents, 3-ethynylthiophene, TMS acety
lene, aliphatic aldehyde (cyclohexyl, isobutyral, formyl) as well as 
benzaldehyde derivatives both with electron donating and electron 

Fig. 1. Copper (1− 2)a and silver (1− 2)b complexes of super bulky N-hetero
cyclic carbenes. 
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Scheme 1. Synthetic pathway for the copper(I) and silver(I) super bulky N-heterocyclic carbene complexes.  

Table 1 
Comparison of the metrical data showing Ccarbene–Cu and Cu–X (X = Cl, Br) bond distances and 13C{1H} NMR chemical shift values for 2a with the representative 
examples known in the literature.  

Entry Complex d(Ccarbene-Cu) 
(Å) 

d(Cu-X) 
(X = Cl, Br) 
(Å) 

13C{1H} NMR 
(Ccarbene-Cu) 
(δ, ppm) 

Ref. 

1. 1.867(3) 2.0944(9) 180.7 [25] 

2. 1.875(2) 2.1044(7) 181.6 [24] 

3. 1.885(2) 2.1062(6) 180.4 [23] 

4. 1.8885(18) 2.1004(7) 180.1 [23] 

5. 1.886(5) 2.2129(9) 180.5 present work  
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Fig. 2. ORTEP drawing of 2a with thermal ellipsoids drawn at the 50 % 
probability level. Selected bond length (Å) and bond angle (

◦

): N(1)− C(1) 1.354 
(4), Cu(1)− C(1) 1.886(5), Cu(1)− Br(1) 2.2129(9), N(1)− C(1)− N(1i) 104.6(4), 
C(1)− Cu(1)− Br(1) 180.0. 

Table 2 
Comparison of the metrical data showing Ccarbene–Ag and Ag–X (X = Cl, Br) bond distances and 13C{1H} NMR chemical shift values for (1–2)b with the representative 
examples known in the literature.  

Entry Complex d(Ccarbene-Ag) 
(Å) 

d(Ag-X) 
(X = Cl, Br) 
(Å) 

13C{1H} NMR 
(Ccarbene-Ag) 
(δ, ppm) 

Ref. 

1. 2.081 (2) 2.3189 (9) 184.2 [19] 

2. 2.080(3) 2.3312(8) 185.8 [24] 

3. 2.067(2) 2.3027(7) 184.4 present work 

4. 2.079(4) 2.3988(5) 184.5 present work  

Fig. 3. ORTEP drawing of 1b with thermal ellipsoids drawn at the 50 % 
probability level. Selected bond length (Å) and bond angle (

◦

): N(1)− C(1) 1.352 
(2), Ag(1)− C(1) 2.067(2), Ag(1)− Cl(1) 2.3027(7), N(1)− C(1)− N(1i) 104.46 
(19), C(1)− Ag(1)− Cl(1) 180.0. 
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withdrawing groups yielded the corresponding propargylamines in 
appreciable yield as showed in Table 3. 

The control and blank run experiments confirmed the active partic
ipation of copper (1–2)a and the silver (1–2)b complexes in catalysis as 
observed from the significant enhancement of the isolated product 
yields of ca. 80 % (1a), ca. 73 % (1b), ca. 88 % (2a) and ca. 79 % (2b) 
when compared to that with the respective metal precursors, namely, 
CuCl (20 %), AgCl (15 %), CuBr (9 %) and AgBr (21 %) for the A3 

coupling of the representative phenyl acetylene, isobutyraldehyde and 
morpholine substrates (Supporting Information Tables S2 and S3). 
Interestingly, the copper chloro (1a) and the bromo (2a) derivatives 
performed better than their silver (1b) and (2b) counterparts, 
respectively. 

Only a handful of reports exist on the use of well-defined molecular 
complexes of coinage metals and the N-heterocyclic carbene ligands in 
the A3 coupling [45,50–55], and copper remain the least explored 
among its group[56,57] Despite these reports [45,50–56,58], we syn
thesized representative benchmark complexes, namely [1,3-(2,4, 
6-Me3C6H2)2-imidazol-2-ylidene]CuCl [59,60], [1,3-(2,4, 
6-Me3C6H2)2-imidazol-2-ylidene]AgCl [60], [1,3-(2,6-i-Pr2C6H3)2-imi
dazol-2-ylidene]CuBr [61], [1,3-(2,6-i-Pr2C6H3)2-imidazol-2-ylidene] 
AgBr[62] and [2,6-bis-(1-(1S)-menthyl-3-methylene-imidazol-2-ylide
ne)-pyridine]Ag2Cl2 [32], for obtaining a direct comparison of the cat
alytic activity with that of the copper (1–2)a and silver (1–2)b 
complexes. Specifically, for the following phenylacetylene, iso
butryaldehyde, and morpholine substrates, significant enhancements of 
the catalysis yield of the product, 4-(3-phenylprop-2-yn-1-yl)morpho
line (5), to the amount of ca. 73–80 % for the copper (1–2)a complexes 
were observed as opposed to that of ca. 36–40 % obtained with the 
benchmark [1,3-(2,4,6-Me3C6H2)2-imidazol-2-ylidene]CuCl[59,60] and 
[1,3-(2,6-i-Pr2C6H3)2-imidazol-2-ylidene]CuBr[61] complexes (Entries 
1 and 3 Supporting Information Table S4). Similar enhancement of the 
product (5) yield of ca. 79–88 % were seen for the silver (1–2)b com
plexes against the corresponding yields of ca. 24–34 % in case of the 
benchmark [1,3-(2,4,9-Me3C6H2)2-imidazol-2-ylidene]AgCl[60] and [1, 
3-(2,6-i-Pr2C6H3)2-imidazol-2-ylidene]AgBr complexes[62] (Entries 2 
and 4 Supporting Information Table S4). The sterically demanding 
copper (1–2)a and silver (1–2)b complexes exhibited superior catalytic 
activities thus favouring the influence of the super bulky N-heterocyclic 
carbene ligands. 

The superiority of these copper (1–2)a and silver (1–2)b complexes 
of the super bulky N-heterocyclic carbenes can be easily gauged from a 
comparison of its catalysis performances made in Table 4 with the 

relevant well-defined molecular complexes of non-bulky N-heterocyclic 
carbene ligands that exist in the literature for the A3 coupling of the 
following representative substrates, phenyl acetylene, formaldehyde 
and piperidine producing the product, 1-(3-phenylprop-2-yn-1-yl) 
piperidine (23). For the sake of uniformity, the catalyst loading was 
calculated with respect to the number of metal centers present in the 
respective catalyst, owing to the existence of both mononuclear as well 
as binuclear complexes in the table. The Au(I) complex, namely [1- 
{CH2CH(OCH3)C6H5}-3-CH3-imidazol-2-ylidene]AuCl [45] exhibited 
near quantitative conversion of ca. 88 % based on 1H NMR at 8 hours of 
reaction time at 80 ◦C but at higher catalyst loading of 3 mol % in 
comparison to that of 1 mol % for the super bulky NHC complexes (1–2) 
a and (1–2)b showing moderate to good isolated yields of ca. 41–52 % 
(Table 4). Again, in dichloromethane at room temperature, the binu
clear silver and gold complexes, 2,6-bis-(1-(1S)-menthyl-3-methyle
ne-imidazol-2-ylidene)-pyridine]M2Cl2 [M––Ag, Au] [32] showed 
isolated yields of ca. 48–51 % but with a higher catalyst loading of 2 mol 
%. In light of these studies, the catalysis yields exhibited by the super 
bulky NHC complexes (1–2)a and (1–2)b complexes are indeed prom
ising and would usher further research into the area. 

In order to test the more meaningful and impactful synthetic utility 
of our A3-coupling protocol, the one-pot coupling reaction was suc
cessfully employed to synthesize the drug molecule pargyline [63], an 
inhibitor of monoamine oxidase B (MAO-B), as outlined in Scheme 2. To 
our delight, the reaction between TMS acetylene, N-methyl-1-
phenylmethanamine and formaldehyde at 100 ◦C and 1 mol % catalyst 
loading (1a/1b/2a/2b) for 16 hours, followed by the treatment with 
base K2CO3 at room temperature for 3 hours, yielded the desired product 
pargyline (28) in good yield (45–67 %). Even, Furthermore, the 
gram-scale synthesis of pargyline was achieved for a representative 
catalyst (1a) in appreciable yield of 1.01 g (63 %) on a 10 mmol scale 
reaction. . 

A proposed catalytic cycle, proceeds via a common metal bound 
acetylide species, [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]M 
(C–––CPh) [where, M = Cu (A), Ag (B)], which is formed from the copper 
(1–2)a and the silver (1–2)b complexes (Scheme 3). Both of the metal 
bound acetylide species have been characterized by mass spectrometry 
as observed from the [M + Na]+ peaks at m/z 1404.5304 (Calcd. 
1404.5308) for the copper bound acetylide (A) species (Fig. 5 and 
Supporting Information Figure S69) and at m/z 1449.5059 (Calcd. 
1449.5054) for the silver bound acetylide (B) species (Fig. 6 and Sup
porting Information Figure S70). Subsequent reaction of the copper 
bound acetylide (A) species and the silver bound acetylide (B) species 
with the protonated Schiff’s base imine gave the desired propargylamine 
product along with the regeneration of the copper (1–2)a and the silver 
(1–2)b complexes. 

The X-ray photoelectron spectroscopy (XPS) analysis provided 
valuable insight about the mechanism of the coupling reaction. In 
particular, the copper 2p core-level peaks of complex (2a) were 
observed at 931.3 eV (Cu 2p3/2) and 951.1 eV (Cu 2p1/2) [64], whereas 
silver 3d core-level peaks of complex (2b) were observed at 368.7 eV (Ag 
3d5/2) and 374.8 eV (Ag 3d3/2) [65], and which are consistent with the 
(+1) oxidation state of both the metal center. Significantly enough, 
peaks of similar values were observed when the XPS data was inspected 
of both the complexes after treatment with phenylacetylene, iso
butyraldehyde and morpholine for 16 h at 100 ◦C i.e. under the catalysis 
conditions. This observation further confirmed the involvement of M(I) 
[M = Cu, Ag] oxidation state in the catalytic cycle (Figs. 7 and 8 and 
Supporting Information Figures S175− S178). 

2.2. Density functional theory studies 

DFT calculations were carried out employing the Gaussian 09 soft
ware suite [66–69]. To undertake an in-depth theoretical examination of 
the electronic structure, bonding, and reactivity involved in this reac
tion, we employed the B3LYP-D3 functional[70,71] along with a 

Fig. 4. ORTEP drawing of 2b with thermal ellipsoids drawn at the 50 % 
probability level. Selected bond length (Å) and bond angle (

◦

): N(1)− C(1) 1.346 
(3), Ag(1)− C(1) 2.079(4), Ag(1)− Br(1) 2.3988(5), N(1)− C(1)− N(1i) 104.9(3), 
C(1)− Ag(1)− Br(1) 180.0. 
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Table 3 
Selected results for the copper (1–2)a and the silver (1–2)b complexes catalyzed aldehyde-amine-acetylene (A3) coupling yielding propargylamines.  

(a). Reaction conditions: 1:1:1 ratio of aldehyde:amine:acetylene, 1 mol % of catalyst (1a/1b/2a/2b), 5.0 mL of toluene at 100 ◦C for 16 hours. Isolated yields are 
reported. 
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combination of the SDD basis set[72] for the copper and silver metal 
center and the 6–31G* basis set for the other atoms [70,71,73,74]. To 
improve the precision of gas-phase energy evaluations, a single-point 
calculation was conducted employing elevated basis sets, notably 
TZVP for the non-metal atoms[75] and SDD for the gold metal center. 
Furthermore, the Polarizable Continuum Model (PCM) solvation model 
was integrated into the analysis [76]. To perform a thorough bonding 
analysis, diverse forms of bonding calculations were executed. The bond 

parameters obtained from the optimized geometries of copper (1–2)a 
and the silver (1–2)b complexes demonstrate strong agreement with 
X-ray structures. This alignment significantly enhances our confidence 
in the chosen methodology (Supporting Information 
Figure S179− S180). The theoretical calculations for the proposed 
pathway were performed on the super bulky 2b complex. In this context, 
the reaction of the corresponding cyclic secondary amine, aliphatic 
aldehyde, and phenylacetylene substrates interacting to form the 

Table 4 
A comparison of A3 coupling reaction of representative piperidine, phenyl acetylene and formaldehyde substrates as catalyzed by well-defined transition metal-NHC 
complexes known in literature.  

S.No Catalyst Time 
(h) 

Solvent Catalyst loading 
(mol %) 

Temperature 
(◦C) 

Yielda 

(%) 
Reference 

1. 8 H2O 3 80 88b [45] 

2. 24 CH2Cl2 2 30 51a [32] 

3. 24 CH2Cl2 2 30 48a [32] 

4. 16 toluene 1 100 52a this work 

5. 16 toluene 1 100 48a this work 

6. 16 toluene 1 100 46a this work 

7. 16 toluene 1 100 41a this work  

a Isolated yield 
b1H NMR yield. 
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propargylamine product (5) by A3 coupling as mediated by the 2b 
complex was studied. 

2.3. The 13C NMR chemical shift analysis 

For the spectroscopic calculations of 13C NMR, we employed the 
Orca 5.0 version software [77,78]. The optimized coordinates obtained 
from DFT calculations served as the input for these computations [66]. 

These calculations were conducted using the B3LYP hybrid functional 
[70,71,74] in conjunction with specific basis sets: SARC-ZORA-TZVPP 
for silver and copper transition metals [79,80], ZORA-def2-TZVP for 
chlorine (Cl) and bromine (Br) atoms [81], IGLO-II for carbon (C), and 
(Si) atoms [82,83] and ZORA-def2-SVP for oxygen (O), nitrogen (N), 
and hydrogen (H) atoms [84]. The identical methodology was also 
employed for 13C NMR calculations in the case of trimethylsilyl (TMS). 

The calculated 13C NMR chemical shifts for the copper (1–2)a and 

Scheme 2. (a). Synthetic route to the monoamine oxidase B inhibitor pargyline through aldehyde:amine:acetylene (A3) coupling. (b) Gram-scale catalytic reaction of 
TMS acetylene, HCHO and N-methyl-1-phenylmethanamine with catalyst (1a), followed by the treatment of K2CO3 to give Pargyline. 

Scheme 3. Proposed mechanism the copper (1–2)a and the silver (1–2)b complexes catalyzed Aldehyde− Amine− Acetylene (A3) coupling reaction for represen
tative substrate namely morpholine, isobutyraldehyde and phenyl acetylene. 
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the silver (1–2)b complexes are similar to the experimentally reported 
values (Supporting Information Table S5). For instance, in the case of 
the copper (1–2)a and the silver (1–2)b complexes, the experimentally 
determined chemical shifts, δ ca. 180.5 ppm for (Cu-NCN) peak and δ ca. 
184.4 - 184.5 ppm for (Ag-NCN) peak, align closely with their respective 
computed counterparts, δ 192.9 ppm for (Cu-NCN) and δ 191.5 - 192.5 
ppm for (Ag-NCN) (Supporting Information Table S5). These findings 
align with similar differences between observed and computed chemical 
shifts reported earlier [39,85–87]. The computed deshielding effects 

observed imply that the dominant factor influencing the Cu-NCN car
bene and (Ag-NCN) carbene bonds arises from the σ character of the 
corresponding occupied molecular orbital. The notable difference of ca. 
8–12 ppm observed in our copper (1–2)a and the silver (1–2)b com
plexes can be attributed to the paramagnetic spin-orbit term, while the 
other contributions remain relatively stable, consistent with the previ
ous findings [39,85–87]. Another noteworthy discovery concerns in the 
copper (1–2)a complexes, the difference in chemical shift between the 
observed and computed values gradually diminishes as you move from 

Fig. 5. HRMS spectra of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]Cu(C–––CPh) (A) detected in the reaction mixture of a 1:1 ratio of phenyl acetylene : 
morpholine: 1 mol% of 2a, and 5.0 mL of toluene at room temperature for 15 min. [(a) Experimental and (b) Simulated pattern of ESI-MS data]. 

Fig. 6. HRMS spectra of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]Ag(C–––CPh) (B) detected in the reaction mixture of a 1:1 ratio of phenyl acetylene : 
morpholine: 1 mol% of 1b, and 5.0 mL of toluene at room temperature for 15 min. [(a) Experimental and (b) Simulated pattern of ESI-MS data]. 

Fig. 7. XPS analysis of the 2p core level peaks of Cu (I), (a) catalyst 2a, and (b) catalyst 2a after treatment with phenyl acetylene, morpholine, and isobutyraldehyde 
for 16 h in 5 mL of toluene at 100 ◦C. 
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the deshielding to the shielding region. However, in the case of silver 
(1–2)b complexes, a similar trend can be observed, with the exception of 
the (Ag-NCN) peak values. 

2.4. Steric parameter (% buried volume) analysis 

The steric mapping plot, along with the computation of buried vol
ume (% VBur) for the copper (1–2)a and the silver (1–2)b complexes, was 
performed utilizing SambVca 2.0 (A Web Tool for Analysing Catalytic 
Pockets with Topographic Steric Maps) [88]. The steric mapping plot 
provides the calculated % VBur volume, which correlates with the steric 
factor. This calculated steric mapping plot was generated using the 
default values within the SambVca 2.0 web tool (Supporting Informa
tion Figure S181-S182 for the Cartesian coordinate representation). 

Steric map plot and percent buried volume (% VBur) computations 
were conducted for copper (1–2)a and the silver (1–2)b complexes. A 
comparative analysis was undertaken between these results and those of 
a previously reported hydrohydrazination catalyst reported [39] (Sup
porting Information Table S6). A comprehensive analysis of the results 
demonstrated that the sterically demanding super bulky catalysts, 2a 
and 2b, exhibit substantial buried volumes (% VBur) of ca. 93.6 % and ca. 
93.5 %, respectively. In contrast, the previously synthesized hydro
hydrazination catalyst based on gold(I) Acyclic Aminooxy Carbene 
(AAOC) complexes, which structurally are more relaxed due to the 
acyclic nature of the singlet carbene ligand, displayed comparatively 
smaller buried volumes (% VBur) of ca. 84.9 % – 91.3 %. These findings 
underscore the critical role of steric effects of the super bulky N-het
erocyclic carbene in efficiently governing this catalytic transformation 
by providing a steric environmental pocket around the catalytically 
active metal center. 

The above %VBur calculations[89] were performed with the inclu
sion of hydrogen taking into account the weak van der Waals in
teractions that prevail between the incoming substrates and the 
concerned catalysts in the course of catalysis and which more often than 
not play a significant role in the catalysis trajectory. However, the %VBur 
calculation values with the exclusion of hydrogens were obtained for a 
comparison with the literature reported values that have been done with 
the exclusion of hydrogens (See Supporting Information Figure S181– 
S182). For example, a % VBur of ≈ 68.0 (r = 5.5 Å), excluding hydrogens, 
is reported for a related copper(I) analog[23] that compares well with 
our current values of ≈ 68.5 % to 68.9 % (r = 7.0 Å) (excluding hy
drogens). (Supporting Information Figure S183). 

2.5. Mechanistic studies 

We have performed DFT calculations on a representative 2b complex 
(Fig. 9 and Supporting Information Figure S179 and S180), and the 
mechanism adapted for our calculations is shown in Scheme 3. The re
action begins with the species 2b, with the phenylacetylene entering the 
coordination sphere leading to the formation of a reactant complex (RC) 
wherein the phenylacetylene is anchored to the catalyst via a number of 
non-covalent interactions (NCI) (Supporting Information Figure S184). 
In the subsequent step, phenylacetylene approaches the Ag center 
closer, leading to the cleavage of the Ag–Br bond via a dissociative 
mechanism leading to the formation of Int1 with the silver-bound 
acetylene complex. In the subsequent stage, a hydrogen transfer event 
transpires from the phenylacetylene species to the cyclic secondary 
amine species, mediated via the transition state TS1. This event leads to 
the creation of a silver metal-bound acetylide species known as Int2, 
whose presence has been corroborated through mass spectroscopy [1,3- 
{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]Ag(C–––CPh) (B) (Support
ing Information Figure S70). In the subsequent stage, the silver-bound 
acetylide species initiates an attack on the protonated Schiff’s base 
imine during the transition state of C–C coupling. This process results in 
the formation of the propargylamine product and concurrently re
generates the catalyst (Fig. 9). 

The optimized geometries of 2b display Ag–Br and Ag–C(1) bonds 
with bond distances of 2.469 Å and 2.102 Å, respectively (Supporting 
Information Figure S186). The Wiberg Bond Index (WBI) analysis yields 
values of 0.48 and 0.40 for these respective bonds, indicative of their 
single-bond character. Further natural bonding orbital (NBO) analysis 
reveals strong ionic character for these bonds, with more than 80 % of 
donation arising from the corresponding donor atoms as seen in the Ag(s) 

13.50 %–Br(pz)86.50 %, and Ag(s)13.43 %–C(1)(pz)86.57 % values (Supporting 
Information Figure S185). The formation of the RC is found to be 
endothermic by 45.1 kJ/mol. At this geometry, the C(1)–Ag–Br angle 
was found to bend significantly (154.1 ̊versus 180.0 ̊ in 2b) and also form 
rather a strong C–H•••Br bond with incoming phenylacetylene and this 
is also accompanied by a lengthening of the Ag–Br bond with enhanced 
polarity (more significant negative charge in the Br), setting the stage for 
its cleavage in the next cycle (Supporting Information Figure S183 and 
Table S7). In the next step the Int1 formation occurs with slight endo
thermicity (+3.7 kJ/mol) and a relaxed scan reveals that this step is a 
barrier-less process (Fig. 10 and Supporting Information Figure S186). 
Notably, the bond distances governing the acetylene-silver interaction, 
along with Ag–C(2) and Ag–C(2i), were measured at 2.305 and 2.434 
Å, respectively (Supporting Information Figure S183). In the subsequent 
stage, the amine group becomes a key participant, engaging in hydrogen 

Fig. 8. XPS analysis of the 3d core level peaks of Ag (I), (a) catalyst 2b, and (b) catalyst 2b after treatment with phenyl acetylene, morpholine, and isobutyraldehyde 
for 16 h in 5 mL of toluene at 100 ◦C. 
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Fig. 9. A proposed mechanism as shown by (a) a simplified Chem Draw illustration and (b) by computed geometries for the A3 coupling as mediated by 2b. (Energy 
in kJ/mol, with Gibbs free energy correction). 
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transfer from the attached acetylene moiety during the transition state 
(TS1) formation with a barrier of 59.7 kJ/mol. The Ag–C(2i) bond is 
elongated at this transition state by 0.08 Å. The hydrogen transfer from 
the acetylene C(2)–H(1) bond takes place at a distance of 1.425 Å, while 
the amine moiety shows this transfer with a H(1)–N(2) bond distance of 
1.244 Å (Supporting Information Figure S183). The orbital plot diagram 
shows the increase in the HOMO-LUMO gap while moving from Int1 to 
TS1, which signifies the observed high activation energy barrier char
acteristic of the transition state (Supporting Information Figure S187). 
Following the hydrogen abstraction by the amine group in the subse
quent step, the acetylide-bound silver species (Int2) formation ensues. 
This event, validated through mass spectroscopy, provides an additional 
layer of confidence in support of the proposed pathway. The formation 
of the acetylide-bound silver species (Int2) is found to be endothermic 
by 28.8 kJ/mol. Here, the geometric parameters are identified as 2.038 
Å for the Ag–C(2) bond and 1.230 Å for the C(2)–C(2i) bond. These 
bond characteristics find additional affirmation through both Wiberg 
Bond Index (WBI) and Natural Bond Orbital (NBO) analyses) (for NBO, 
and WBI details of all optimized species, (Supporting Information 
Figure S188-S191 and Table S8). In the subsequent steps of the proposed 
mechanism, the acetylide species coordinated to silver (Int2) takes on 
the role of a nucleophile and initiates an attack on the protonated 
Schiff’s base imine. This sequential process leads to forming the product 
propargylamine compound (5) and the subsequent catalyst regenera
tion. The transition state signifies an energy barrier of 60.3 kJ/mol from 
Int2. Although the barrier height is larger, hinting at kinetic hindrance 
at play, it is important to note the reactions are conducted at elevated 
temperatures (100 ◦C), substantiating the manifestation of a high- 
energy barrier. 

This transition state (TS2) formation step emphasizes the signifi
cance of the C–C coupling step as the rate-determining event in the A3 

coupling reaction. The optimized geometry exposes a C–C coupling 
distance of 2.271 Å. Notably, during the transition state, a marginal 
elongation is evident in the Ag–C(2) bond, indicating its readiness to 
act as a nucleophile and engage in attack. The Wiberg Bond Index (WBI) 
analysis showcases a value of 0.29 for the C2-C3 bond, subtly suggesting 
a single bond character. This observation finds further reinforcement 
through the Natural Bond Orbital (NBO) analysis, which underscores the 
bonding nature between the C(2)-C(3) bond (C(2)(pz)45.13 %–C(3)(pz)54.87 

%) %) (Supporting Information Figure S191). When progressing from 
Int2 to TS2, a noticeable decrease in the HOMO-LUMO gap is observed 
(Supporting Information Figure S187). This reduction signifies elec
tronic effects that lower the energy gap, thereby facilitating the C–C 
coupling. Additionally, it is evident that weak interactions (obtained by 
non-covalent interaction (NCI) analysis), such as van der Waals forces 
(C-H•••π, π•••π, C–H•••O) (Supporting Information Figure S192), play 
a significant role in anchoring the Schiff’s base imine in the vicinity 
during the formation of the transition state (TS2). To elucidate the cause 
of the relatively high barrier computed for TS2, we conducted a defor
mation energy analysis, revealing an energy penalty of 385.8 kJ/mol. 
This analysis provides a rationale for the estimated barrier (Fig. 10). 
However, favourable orbital interactions accompanied by a number of 
non-covalent interactions help to bring down the barrier to 137.2 kJ/ 
mol to make the reaction facile at 100 ◦C as observed experimentally 
(Fig. 10 and Supporting Information Figure S192). Subsequently, in the 
subsequent step, catalyst regeneration occurs as an exothermic process, 
underscoring the feasibility of the reaction (Fig. 10). 

3. Conclusions 

In summary, a series of super bulky N-heterocyclic carbene com
plexes of silver and copper namely, [1,3-{2,4,6-(Ph2CH)3C6H2}2- 

Fig. 10. Energy profile diagram for A3 coupling as mediated by 2b is shown. (Energy in kJ/mol, with Gibbs free energy correction).  
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imidazol-2-ylidene]MX [where, M = Cu; X = Cl (1a), Br (2a): M = Ag; X 
= Cl (1b), Br (2b)] were synthesized which efficiently carried out the A3 

coupling of the secondary amine, aliphatic aldehyde, and phenyl
acetylene substrates, yielding propargylamine in moderate to good (ca. 
65–89 %) yields. Mechanistic investigations based on mass spectrometry 
studies suggest that the A3 coupling proceeds via a metal bound acety
lide species, [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]M 
(C–––CPh) [where, M = Cu (A), Ag (B)]. The DFT investigation further 
supports that the catalytic cycle begins with species 2b, leading to the 
formation of a reactant complex (RC) where acetylene binds through 
non-covalent interactions and shows how weak interactions play an 
important role during the catalysis. A hydrogen transfer event from 
phenylacetylene to the cyclic secondary amine species, mediated via 
transition state TS1, follows, creating an acetylide-bound silver species 
known as Int2, confirmed by mass spectroscopy. Int2 initiates an attack 
on the protonated Schiff’s base imine during the C–C coupling transi
tion state, yielding the catalysis product and regenerating the catalyst 
with an energy barrier of 60.3 kJ/mol from Int2 and can be observed as 
a rate-determining step. In subsequent steps, the acetylide species, co
ordinated to silver, acts as a nucleophile and initiates an attack on the 
protonated Schiff’s base imine, forming morpholine and regenerating 
the catalyst. Progressing from Int2 to TS2, a noticeable decrease in the 
HOMO-LUMO gap occurs, facilitating the C–C coupling state. Weak 
interactions, including van der Waals forces, significantly stabilize the 
Schiff’s base imine during the formation of transition state TS2, 
collectively contributing to the C–C coupling transition state. The 
process concludes with an exothermic catalyst regeneration, confirming 
the A3 coupling reaction’s feasibility. The combined experimental and 
computational study further establishes the favourable influence of the 
sterically demanding super bulky N-heterocyclic carbenes in the A3 

coupling catalysis. The coupling reaction was not only successfully 
employed for the synthesis of a drug, pargyline, an inhibitor of mono
amine oxidase B (MAO-B), but the same was demonstrated for a gram- 
scale synthesis for a representative catalyst (1a). It would pave the 
way for future research on developing the favourable influence of super 
bulky N-heterocyclic carbene ligands on catalysis. 

4. Experimental section 

General procedures: All manipulations were carried out using a 
combination of a glovebox and standard Schlenk techniques. Solvents 
were purified and degassed by standard procedures. Ag2O was pur
chased from Spectrochem Pvt. Ltd, and Cu2O from Aldrich. 2,4,6,-tri
benzylhydrylaniline[17] was synthesised according to literature 
procedure. The compound [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Cl 
(1) was synthesised by modified procedure than that reported in the 
literature[17,23] and [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene] 
CuCl (1a) was synthesised by different procedure than that reported in 
the literature [23]. 1H NMR, 13C{1H} NMR, spectra were recorded on 
Bruker 400 & 500 MHz spectrometer. 1H NMR peaks are labelled as 
singlet (s), doublet (d), triplet (t), doublet of doublet (dd) and multiplet 
(m). Infrared spectra were recorded on a Perkin Elmer Spectrum One 
FT-IR spectrometer. Mass spectrometry measurements were done on a 
Micromass Q-Tof spectrometer and Bruker maxis impact spectrometer. 
Elemental analysis was carried out on ThermoFinnigan FLASH EA 1112 
SERIES (CHNS) Elemental analyser. X-ray photoelectron spectra were 
acquired on Kartos analytical AXIS Supra spectrometer with a mono
chromatic Al Kα X-ray source (1486.6 eV) using a pass energy of 20 eV. 
The XPS binding energies were referred to the C 1 s peak at 284.6 eV 
[90], to give an accurate energy calibration. X-ray diffraction data for 
compounds 1b, 2a and 2b were collected on a Bruker APEX 2 CCD 
platform diffractometer (MoKa (k = 0.71073 Å)) equipped with an Ox
ford liquid nitrogen cryostream. Crystals were mounted in a nylon loop 
with Paratone-N cryoprotectant oil. The structures were solved using 
direct methods and standard difference map techniques, and were 
refined by full-matrix least-squares procedures on F2 with SHELXTL 

(Version 6.14) [91]. CCDC-2218967 (for 1b), CCDC-2218671 (for 2a), 
and CCDC-2218670 (for 2b), contain the supplementary crystallo
graphic data related to this article. These data can be obtained free of 
charge from the Cambridge Crystallographic Data center via www.ccdc. 
cam.ac.uk/data_request/cif. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Cl (1)[17,23] 
To a solution of 2,4,6-tribenzhydrylaniline (2.00 g, 3.40 mmol) in 

CH2Cl2 (ca. 40 mL), 40 % aqueous glyoxal (0.993 g, 6.85 mmol) was 
added and stirred for 45 min. To this reaction mixture, 37 % aqueous 
formaldehyde (1.40 g, 17.2 mmol) and HCl (ca. 2 mL) were added and 
stirred for 24 h at 45 ◦C, after which the volatiles were removed under 
reduced pressure. The black material was extracted with CHCl3 (ca. 2 ×
10 mL) and dried over anhydrous Na2SO4. Then the resulting crude 
compound was purified by column chromatography in silica gel using 
CHCl3:CH3OH (95:5 v/v) to give the product as brown colour solid (1.14 
g 27 %). 1H NMR (CDCl3, 400 MHz, 25 ◦C): δ ppm 13.0 (s, 1H, NCHN), 
7.18− 7.06 (m, 44H, 2C6H2(CH(C6H5)2)3), 6.92 (d, 8H, JH-H = 8 Hz, 
2C6H2(CH(C6H5)2)3), 6.71 (s, 4H, 2C6H2(CH(C6H5)2)3), 6.70 (d, 8H, JH- 

H = 8 Hz, 2C6H2(CH(C6H5)2)3), 5.61 (s, 2H, NC2H2N), 5.35 (s, 2H, 
2C6H2(CH(C6H5)2)3), 5.27 (s, 4H, 2C6H2(CH(C6H5)2)3). 13C{1H} NMR 
(CDCl3, 100 MHz, 25 ◦C): δ 147.2 (NCHN), 142.6 (C6H2(CH(C6H5)2)3), 
142.1 (2C6H2(CH(C6H5)2)3), 141.6 (2C6H2(CH(C6H5)2)3), 140.5 
(2C6H2(CH(C6H5)2)3), 131.5 (2C6H2(CH(C6H5)2)3), 130.3 (2C6H2(CH 
(C6H5)2)3), 129.7 (2C6H2(CH(C6H5)2)3), 129.2 (2C6H2(CH(C6H5)2)3), 
129.0 (2C6H2(CH(C6H5)2)3), 128.6 (2C6H2(CH(C6H5)2)3), 128.5 
(2C6H2(CH(C6H5)2)3), 128.3 (2C6H2(CH(C6H5)2)3), 126.9 (2C6H2(CH 
(C6H5)2)3), 126.7 (2C6H2(CH(C6H5)2)3), 126.4 (2C6H2(CH(C6H5)2)3), 
123.5 (NC2H2N), 56.1 (2C6H2(CH(C6H5)2)3), 51.4 (2C6H2(CH 
(C6H5)2)3). IR data (cm− 1) KBr pellet: 3057 (m), 3027 (m), 2905 (s), 
2755 (w), 1952 (w), 1814 (w), 1598 (m), 1523 (m), 1493 (s), 1446 (s), 
1269 (w), 1142 (w), 1079 (m), 1029 (s), 918 (w), 848 (w), 766 (m), 747 
(m), 705 (s), 606 (w), 517 (w). HRMS (ESI) m/z 1217.5773 
[C93H73N2− Cl]+ calcd 1217.5768. Anal. Calcd. for C93H73ClN2: C, 
89.07; H, 5.87; N, 2.23. Found: C, 87.18; H, 5.54; N, 3.83 %. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]CuCl (1a)[23] 
To a solution of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Cl (1) 

(1.501 g, 1.20 mmol) in CH2Cl2 (ca. 20 mL), Cu2O (0.501 g, 3.50 mmol) 
was added and stirred in dark at room temperature for 12 h. The 
resulting reaction mixture was filtered over celite, and washed with 
CH2Cl2 (ca. 3 × 10 mL). The combined filtrates were collected, and 
volatiles were removed in vaccuo to give the product as a white solid. 
This crude compound was purified by column in neutral alumina using 
CHCl3 to get the product as brown solid (1a) (0.581 g, 37 %). 1H NMR 
(CDCl3, 400 MHz, 25 ◦C): δ ppm 7.21− 7.07 (m, 36H, 2C6H2(CH 
(C6H5)2)3), 6.94− 6.92 (m, 9H, 2C6H2(CH(C6H5)2)3), 6.89− 6.87 (m, 7H, 
2C6H2(CH(C6H5)2)3), 6.80− 6.78 (m, 12H, 2C6H2(CH(C6H5)2)3 and 
2C6H2(CH(C6H5)2)3), 5.91 (s, 2H, NC2H2N), 5.39 (s, 2H, 2C6H2(CH 
(C6H5)2)3), 5.17 (s, 4H, 2C6H2(CH(C6H5)2)3). 13C{1H} NMR (CDCl3, 100 
MHz, 25 ◦C): δ 180.5 (Cu-NCN), 145.8 (2C6H2(CH(C6H5)2)3), 143.1 
(2C6H2(CH(C6H5)2)3), 143.0 (2C6H2(CH(C6H5)2)3), 142.1 (2C6H2(CH 
(C6H5)2)3), 141.0 (2C6H2(CH(C6H5)2)3), 134.7 (2C6H2(CH(C6H5)2)3), 
130.8 (2C6H2(CH(C6H5)2)3), 129.4 (2C6H2(CH(C6H5)2)3), 129.3 
(2C6H2(CH(C6H5)2)3), 128.6 (2C6H2(CH(C6H5)2)3), 128.4 (2C6H2(CH 
(C6H5)2)3), 128.3 (2C6H2(CH(C6H5)2)3), 126.6 (2C6H2(CH(C6H5)2)3), 
126.5 (2C6H2(CH(C6H5)2)3), 126.3 (2C6H2(CH(C6H5)2)3), 123.2 
(NC2H2N), 56.3 (2C6H2(CH(C6H5)2)3), 51.4 (2C6H2(CH(C6H5)2)3). IR 
data (cm− 1) KBr pellet: 3057 (m), 3025 (m), 2923 (w), 1598 (m), 1526 
(m), 1493 (s), 1466 (m), 1448 (s), 1283 (w), 1078 (m), 1030 (s), 916 
(w), 848 (w), 766 (m), 745 (m), 703 (s), 606 (w), 522 (w). HRMS (ESI) 
found m/z 1280.5023 [C93H72N2Cu− Cl]+ calcd 1280.5019. Anal. Calcd. 
for C93H73N2CuCl: C, 84.84; H, 5.51; N, 2.13. Found: C, 85.75; H, 5.17; 
N, 1.41 %. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]AgCl (1b) 
To a solution of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Cl (1) 

(0.501 g, 0.40 mmol) in CH2Cl2 (ca. 20 mL), Ag2O (0.151 g, 0.65 mmol) 
was added and stirred in the dark at room temperature for 12 h. The 
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resulting reaction mixture was filtered over celite, and washed with 
CH2Cl2 (ca. 3 × 10 mL). The combined filtrates were collected, and the 
volatiles were removed in vaccuo to give the product as a white solid. 
This crude compound was purified by column in neutral alumina in 
CHCl3 to give the product (1b) as a solid (0.151 g, 28 %). Single crystals 
for X-ray diffraction studies were grown from the CHCl3 employing a 
slow evaporation technique. 1H NMR (CDCl3, 400 MHz, 25 ◦C): δ ppm 
7.24− 7.14 (m, 25H, 2C6H2(CH(C6H5)2)3), 7.11− 7.10 (m, 11H, 
2C6H2(CH(C6H5)2)3), 6.97− 6.96 (d, 8H, JH-H = 8 Hz, 2C6H2(CH 
(C6H5)2)3), 6.84− 6.80 (m, 20H, 2C6H2(CH(C6H5)2)3 and 2C6H2(CH 
(C6H5)2)3), 6.05 (d, 2H, NC2H2N), 5.42 (s, 2H, 2C6H2(CH(C6H5)2)3). 
5.12 (s, 2H, 4C6H2(CH(C6H5)2)3). 13C{1H} NMR (CDCl3, 100 MHz, 25 
◦C): δ 184.4 (d, 1J109Ag-13Ccarbene = 267 Hz, 1J107Ag-13Ccarbene = 230 
Hz, Ag-NCN), 145.8 (2C6H2(CH(C6H5)2)3), 143.0 (2C6H2(CH(C6H5)2)3), 
142.9 (2C6H2(CH(C6H5)2)3), 141.8 (2C6H2(CH(C6H5)2)3), 140.8 
(2C6H2(CH(C6H5)2)3), 134.7 (2C6H2(CH(C6H5)2)3), 130.8 (2C6H2(CH 
(C6H5)2)3), 129.3 (2C6H2(CH(C6H5)2)3), 129.2 (2C6H2(CH(C6H5)2)3), 
129.2 (2C6H2(CH(C6H5)2)3), 128.7 (2C6H2(CH(C6H5)2)3), 128.4 
(2C6H2(CH(C6H5)2)3), 128.3 (2C6H2(CH(C6H5)2)3), 126.7 (2C6H2(CH 
(C6H5)2)3), 126.6 (2C6H2(CH(C6H5)2)3), 126.4 (2C6H2(CH(C6H5)2)3), 
123.6 (NC2H2N), 123.5 (NC2H2N), 56.1 (2C6H2(CH(C6H5)2)3), 51.2 
(2C6H2(CH(C6H5)2)3). IR data (cm− 1) KBr pellet: 3058 (m), 3025 (m), 
2922 (w), 1598 (m), 1493 (s), 1467 (m), 1448 (s), 1266 (w), 1078 (m), 
1030 (s), 912 (w), 766 (m), 745 (m), 701 (s), 606 (w), 523 (w). HRMS 
(ESI) found m/z 1325.4763 [C93H72N2Ag− Cl]+ calcd 1325.4763. Anal. 
Calcd. for C93H72N2AgCl: C, 82.08; H, 5.33; N, 2.06. Found: C, 81.21; H, 
4.68; N, 1.84 %. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Br (2) 
To a solution of 2,4,6-tribenzhydrylaniline (2.00 g, 3.38 mmol) in 

CH2Cl2 (ca. 40 mL), 40 % aqueous glyoxal (0.992, 6.84 mmol) was 
added and stirred for 45 minutes. To this reaction mixture, 37 % 
aqueous formaldehyde (1.38 g, 17.04 mmol) and HBr (ca. 2 mL) were 
added and stirred at 45 ◦C for 24 h the volatiles were removed under 
reduced pressure. The black material was extracted with CHCl3 (ca. 2 ×
10 mL) and dried over anhydrous Na2SO4. Then the resulting crude 
compound was purified by column chromatography in silica gel using 
CHCl3:CH3OH (95:5 v/v) to give the product as brown colour solid 
(0.714 g, 16 %). 1H NMR (CDCl3, 400 MHz, 25 ◦C): δ ppm 12.39 (s, 1H, 
NCHN), 7.20− 7.13 (m, 44H, 2C6H2(CH(C6H5)2)3), 6.96 (d, 8H, JH-H = 8 
Hz, 2C6H2(CH(C6H5)2)3), 6.79− 6.74 (m, 12H, 2C6H2(CH(C6H5)2)3 and 
2C6H2(CH(C6H5)2)3), 5.75 (s, 2H, NC2H2N), 5.39 (s, 2H, 2C6H2(CH 
(C6H5)2)3), 5.28 (s, 4H, 2C6H2(CH(C6H5)2)3). 13C{1H} NMR (CDCl3, 100 
MHz, 25 ◦C): δ 147.3 (NCHN), 142.6 (2C6H2(CH(C6H5)2)3), 142.1 
(2C6H2(CH(C6H5)2)3), 141.6 (2C6H2(CH(C6H5)2)3), 140.5 (2C6H2(CH 
(C6H5)2)3), 131.5 (2C6H2(CH(C6H5)2)3), 130.3 (2C6H2(CH(C6H5)2)3), 
129.8 (2C6H2(CH(C6H5)2)3), 129.2 (2C6H2(CH(C6H5)2)3), 129.1 
(2C6H2(CH(C6H5)2)3), 128.7 (2C6H2(CH(C6H5)2)3), 128.5 (2C6H2(CH 
(C6H5)2)3), 128.4 (2C6H2(CH(C6H5)2)3), 127.1 (2C6H2(CH(C6H5)2)3), 
126.8 (2C6H2(CH(C6H5)2)3), 126.4 (2C6H2(CH(C6H5)2)3), 123.7 
(NC2H2N), 56.2 (2C6H2(CH(C6H5)2)3), 51.4 (2C6H2(CH(C6H5)2)3). IR 
data (cm− 1) KBr pellet: 3416 (w), 3058 (m), 3026 (m), 2876 (s), 2755 
(w), 1598 (m), 1526 (m), 1493 (s), 1447 (s), 1256 (w), 1140 (w), 1079 
(m), 1030 (s), 916 (w), 848 (w), 766 (m), 746 (m), 703 (s), 606 (w), 518 
(w). HRMS (ESI) m/z found 1218.5807 [C93H73N2-Br]+ calcd 
1218.5802. Anal. Calcd. for C93H73BrN2: C, 86.02; H, 5.67; N, 2.16. 
Found: C, 85.33; H, 5.65; N, 2.56 %. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]CuBr (2a) 
To the solution of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Br (2) 

(1.01 g, 0.782 mmol) in CH2Cl2 (ca. 20 mL), Cu2O (0.257 g, 1.79 mmol) 
was added and stirred in the dark at room temperature for 12 hours. The 
resulting reaction mixture was filtered over celite, and washed with 
CH2Cl2 (ca. 3 × 10 mL). The combined filtrates were collected, and the 
volatiles were removed in vaccuo to give the product as a white solid. 
This crude compound was purified by column in neutral alumina in 
CHCl3 to give the product (2a) as a solid (0.310 g, 29 %). Single crystals 
for X-ray diffraction studies were grown from the CHCl3 employing a 

slow evaporation technique. 1H NMR (CDCl3, 400 MHz, 25 ◦C): δ ppm 
7.23− 7.07 (m, 36H, 2C6H2(CH(C6H5)2)3), 6.92 (d, 10H, JH-H = 8 Hz 
2C6H2(CH(C6H5)2)3), 6.88− 6.86 (m, 8H, 2C6H2(CH(C6H5)2)3), 
6.80− 6.77 (m, 10H, 2C6H2(CH(C6H5)2)3 and 2C6H2(CH(C6H5)2)3) 5.91 
(s, 2H, NC2H2N), 5.39 (s, 2H, 2C6H2(CH(C6H5)2)3) 5.16 (s, 4H, 
2C6H2(CH(C6H5)2)3). 13C{1H} NMR (CDCl3, 100 MHz, 25 ◦C): δ 180.5 
(Cu-NCN), 145.7 (2C6H2(CH(C6H5)2)3), 143.1 (2C6H2(CH(C6H5)2)3), 
142.9 (2C6H2(CH(C6H5)2)3), 142.1 (2C6H2(CH(C6H5)2)3), 140.9 
(2C6H2(CH(C6H5)2)3), 134.6 (2C6H2(CH(C6H5)2)3), 130.8 (2C6H2(CH 
(C6H5)2)3), 129.4 (2C6H2(CH(C6H5)2)3), 129.3 (2C6H2(CH(C6H5)2)3), 
129.2 (2C6H2(CH(C6H5)2)3), 128.5 (2C6H2(CH(C6H5)2)3), 128.4 
(2C6H2(CH(C6H5)2)3), 128.3 (2C6H2(CH(C6H5)2)3), 128.1 (2C6H2(CH 
(C6H5)2)3), 126.6 (2C6H2(CH(C6H5)2)3), 126.5 (2C6H2(CH(C6H5)2)3), 
126.3 (2C6H2(CH(C6H5)2)3), 123.2 (NC2H2N), 56.2 (2C6H2(CH 
(C6H5)2)3), 51.3 (2C6H2(CH(C6H5)2)3). IR data (cm− 1) KBr pellet: 3057 
(m), 3025 (m), 2921 (w), 1598 (m), 1493 (s), 1466 (m), 1448 (s), 1283 
(w), 1078 (m), 1030 (m), 916 (w), 766 (m), 745 (m), 703 (s), 606 (w), 
522 (w). HRMS (ESI) m/z found 1280.5023 [C93H72N2Cu-Br]+ calcd 
1280.5019. Anal. Calcd. for C93H72N2CuBr: C, 82.07; H, 5.33; N, 2.06. 
Found: C, 82.67; H, 5.48; N, 2.43 %. 

[1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazol-2-ylidene]AgBr (2b) 
To the solution of [1,3-{2,4,6-(Ph2CH)3C6H2}2-imidazolium]Br (2) 

(1.07 g, 0.824 mmol) in CH2Cl2 (ca. 20 mL), Ag2O (0.315 g, 1.35 mmol) 
was added stirred in the dark at room temperature for 12 hours. The 
resulting reaction mixture was filtered over celite, and washed with 
CH2Cl2 (ca. 3 × 10 mL). The combined filtrates were collected, and the 
volatiles were removed in vaccuo to give the product as a white solid. 
This crude compound was purified by column in neutral alumina in 
CHCl3 to give the product (2b) as a solid (0.232 g, 20 %). Single crystals 
for X-ray diffraction studies were grown from the CHCl3 employing a 
slow evaporation technique. 1H NMR (CDCl3, 400 MHz, 25 ◦C): δ ppm 
7.21− 7.12 (m, 24H, 2C6H2(CH(C6H5)2)3), 7.09− 7.07 (m, 12H, 
2C6H2(CH(C6H5)2)3), 6.93 (d, 8H, 2C6H2(CH(C6H5)2)3), 6.80− 6.77 (m, 
20H, 2C6H2(CH(C6H5)2)3 and 2C6H2(CH(C6H5)2)3), 6.04 (s, 2H, 
NC2H2N), 5.40, (s, 2H, 2C6H2(CH(C6H5)2)3), 5.08 (s, 4H, 2C6H2(CH 
(C6H5)2)3). 13C{1H} NMR (CDCl3, 100 MHz, 25 ◦C): δ 184.5 (d, 
1J109Ag-13Ccarbene = 267 Hz, 1J107Ag-13Ccarbene = 231 Hz, Ag-NCN), 
145.9 (2C6H2(CH(C6H5)2)3), 143.0 (2C6H2(CH(C6H5)2)3), 142.9 
(2C6H2(CH(C6H5)2)3), 141.8 (2C6H2(CH(C6H5)2)3), 140.8 (2C6H2(CH 
(C6H5)2)3), 134.8 (2C6H2(CH(C6H5)2)3), 130.9 (2C6H2(CH(C6H5)2)3), 
129.2 (2C6H2(CH(C6H5)2)3), 128.7 (2C6H2(CH(C6H5)2)3), 128.5 
(2C6H2(CH(C6H5)2)3), 128.4 (2C6H2(CH(C6H5)2)3), 126.7 (2C6H2(CH 
(C6H5)2)3), 126.6 (2C6H2(CH(C6H5)2)3), 126.4 (2C6H2(CH(C6H5)2)3), 
123.7 (NC2H2N), 123.6 (NC2H2N), 56.2 (2C6H2(CH(C6H5)2)3), 51.3 
(2C6H2(CH(C6H5)2)3). IR data (cm− 1) KBr pellet: 3058 (m), 3025 (m), 
2922 (w), 1598 (m), 1493 (s), 1467 (m), 1448 (s), 1384 (w), 1266 (w), 
1078 (m), 1030 (m), 915 (w), 766 (m), 745 (m), 701 (s), 606 (w), 523 
(w). LRMS (ESI) m/z found 1325 [C93H72N2Ag− Br]+ calcd 1325. Anal. 
Calcd. for C93H72N2AgBr: C, 79.48; H, 5.16; N, 1.99. Found: C, 78.89; H, 
5.20; N, 2.00 %. 

General procedure for Aldehyde¡Amine¡Acetylene (A3) 
coupling reaction for synthesis of propargylamine. 

In a typical catalysis run, calculated amount of metal− NHC pre
catalyst 1a/1b/2a/2b (0.02 mmol, 1 mol %) was dissolved in 5 mL of 
toluene and to this solution phenyl acetylene (2.00 mmol) was added 
and stirred for 15 minutes followed by addition of aldehyde (2.00 mmol) 
and amine (2.00 mmol) in the respective order and was stirred at 100 ◦C 
for 16 hours. The reaction was quenched with Et2O, extracted with ca. 2 
× 10 mL of CH2Cl2, the combined organic fraction was dried over 
Na2SO4, and the volatiles were removed under reduced pressure to 
obtain crude product. The crude product was further purified by silica 
gel column chromatography using a mixed medium of petroleum ether 
and EtOAc to give the desired products (3− 27). 

General procedure for aldehyde¡amine-acetylene (A3) 
coupling reaction for the synthesis of monoamine oxidase B in
hibitor pargyline 
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In a typical catalysis run, calculated amount of metal− NHC pre
catalyst 1a/1b/2a/2b (0.02 mmol, 1 mol %) was dissolved in 5 mL of 
toluene and to this solution TMS acetylene (2.00 mmol) was added and 
stirred for 15 minutes followed by addition of formaldehyde (2.00 
mmol) and N-methylbenzylamine (2.00 mmol) in the respective order 
and was stirred at 100 ◦C for 16 h. After that it was cooled down to room 
temperature, the solvent was evaporated and redissolved in 5 mL of 
CH3OH, followed by the addition of K2CO3 (10.0 mmol). The resulting 
reaction mixture was stirred at room temperature for 3 h. The reaction 
was quenched with Et2O, extracted with 2 × 10 mL of CH2Cl2, the 
combined organic fraction was dried over Na2SO4, and the volatiles 
were removed under reduced pressure to obtain crude product. The 
crude product was further purified by silica gel column chromatography 
using a mixed medium of petroleum ether and EtOAc to give the desired 
product (28). 

General procedure for aldehyde¡amine-acetylene (A3) 
coupling reaction for the gram-scale synthesis of monoamine oxi
dase B inhibitor pargyline 

In a typical catalysis run, calculated amount of metal− NHC pre
catalyst 1a (0.1 mmol, 1 mol %) was dissolved in 5 mL of toluene and to 
this solution TMS acetylene (10.0 mmol) was added and stirred for 15 
min followed by addition of formaldehyde (10.0 mmol) and N-methyl
benzylamine (10.0 mmol) in the respective order and was stirred at 100 
◦C for 16 h. After that it was cooled down to room temperature, redis
solved in 15 mL of CH3OH and K2CO3 (50.0 mmol) was added to it. The 
resulting reaction mixture was stirred at room temperature for 3 h. The 
reaction was quenched with Et2O, extracted with 2 × 50 mL of CH2Cl2, 
the combined organic fraction was dried over Na2SO4, and the volatiles 
were removed under reduced pressure to obtain crude product. The 
crude product was further purified by silica gel column chromatography 
using a mixed medium of petroleum ether and EtOAc to give the desired 
product (28) (1.01 g, 63 %). 

4.1. Computational studies 

In this study, Gaussian 09 Revision D.01[66] was used for perform
ing all DFT calculations, while Orca 5.0 version software[77,78] was 
chosen specifically for spectroscopic calculations, including 13C NMR 
analyses. Grimme’s dispersion-corrected B3LYP functional (B3LYP-D3) 
was employed for geometry optimization [70,71]. (Supporting Infor
mation Tables S9-S14). Geometry optimization and computation of 
imaginary frequencies were conducted for all entities, encompassing 
copper (1–2)a and the silver (1–2)b complexes, intermediates, and 
transition states. The calculations were conducted using the SDD basis 
set for copper and silver metal[72] and the 6–31G* basis set for elements 
such as C, H, N, O, and Br [70,71,73,74]. Frequency calculations were 
executed to pinpoint minima on the potential-energy surface (PES) and 
to determine the Gibbs free energy correction. Furthermore, we incor
porated solvation energy into the gas phase energy (Gibbs free energy 
correction) by employing a more advanced level of theory 
(B3LYP-D3/SDD, TZVP) [75]. Solvation energy was determined using 
the polarizable continuum model (PCM) in conjunction with the solvent 
toluene [76]. The PCM model accounts for solvation-free energy by 
evaluating electrostatic, dispersion-repulsion, and cavitation terms. The 
choice of toluene as the solvent aligns with the experimental conditions 
as reported. We employed two software applications, Chemcraft 1.6[92] 
and Gaussview 6.0 [93], to visualize the optimized geometries effec
tively. Furthermore, Gaussian 09 software was utilized to conduct 
thorough NBO (Natural Bond Orbital)[94] and WBI (Wiberg Bond 
Index) analyses[95] using DFT methods. The NBO analysis offered 
detailed insights into the characteristics of bonding orbitals and pro
vided valuable information about the distribution of natural charges 
within the system. On the other hand, WBI analysis provided bond index 
values that elucidated the nature of the bonds, indicating whether they 
are single, double, or triple bonds. The optimized geometry coordinates 
has been given in the Supporting Information Tables S9-S14. 

The non-covalent interactions (NCI) analysis has been done by 
Multiwfn 3.8[96] and VMD software [97]. The default reduced density 
gradient (RDG) isosurface value 0.5, and the color range (− 0.035 to 
0.02) were taken in calculation. The steric map plot calculations were 
performed using the SambVca 2.0 tool [88], specifically designed for 
analysing catalytic pockets through topographic steric maps. The XYZ 
coordinates required for generating steric map plots were derived from 
optimized geometries obtained through Gaussian 09 [66]. The SambVca 
2.0 web tool establishes a correlation between steric effects and the 
percentage of buried volume (% VBur). Colour transitions from red to 
blue on the steric map plot indicate a decrease in steric influence, while 
the reverse trend is denoted by blue to red shifts. Flexibility in the steric 
map plot’s customization is facilitated by adjusting parameters like 
atomic radii, sphere radius, and mesh spacing for numerical integration 
according to specific needs. In our study, we adhered to the default 
settings, and it’s important to note that our calculations encompassed 
hydrogen atoms in the input, ensuring a comprehensive analysis. 

For the purpose of conducting 13C NMR calculations using ORCA 5.0 
software [77,78], we opted for the hybrid Generalized Gradient 
Approximation (GGA) B3LYP functional [70,71,74]. Within our study, 
we employed the Resolution of Identity (RI) approximation, specifically 
utilizing the RIJCOSX approximation [98]. Our choice of basis sets for 
the 13C NMR calculations included SARC-ZORA-TZVPP for silver and 
copper metals [79,80], ZORA-def2-TZVP for chlorine and bromine 
atoms [81], IGLO-II for carbon atoms [82,83], and ZORA-def2-SVP for 
silicon, oxygen, nitrogen, and hydrogen atoms [84]. An essential detail 
to highlight is that the optimized coordinates obtained from Gaussian 09 
software[66] were utilized as the foundation for our 13C NMR calcula
tions. This decision ensured both consistency and precision in our 
analytical outcomes. 

Supporting Information 

General procedure for blank run, control runs, mercury-drop 
experiment, mass experiment for the detection of catalytic in
termediates and XPS experiments, and analytical data of catalysis 
products (3–28), 1H NMR, 13C{1H} NMR, IR, HRMS, elemental analysis 
data of the compounds (1–2)a, and (1–2)b, and 1H NMR, Mass data, and 
elemental analysis data of the catalysis products (3–28); X-ray crystal
lographic data for the complexes CCDC-2218967 (for 1b), CCDC- 
2218671 (for 2a), CCDC-2218670 (for 2b), (CIF), Steric map plot for 
copper (1–2)a and the silver (1–2)b complexes, 13C NMR calculations 
for copper (1–2)a and the silver (1–2)b complexes, ChemDraw mecha
nism for A3 coupling reaction of cyclic/acyclic secondary amines, 
aliphatic/aromatic aldehydes, and phenylacetylene substrates, the DFT 
method optimized coordinates, natural charges, NBO plots, WBI value, 
NCI calculations, and structural parameters of species copper (1–2)a and 
the silver (1–2)b, reactant complex (RC), transition states (TS1), (TS2) 
and intermediates (Int1), (Int2), and the energy profile diagrams for the 
A3 coupling proposed pathway, can be found with this article. The X-ray 
crystallographic data can be obtained free of charge from the Cambridge 
Crystallographic Data centre via www.ccdc.cam.ac.uk/data_request/cif. 
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[18] S. Dierick, D.F. Dewez, I.E. Markó, IPr*(2-Np)—An exceedingly bulky n- 
heterocyclic carbene, Organometallics 33 (3) (2014) 677–683. 

[19] G. Berthon-Gelloz, M.A. Siegler, A.L. Spek, B. Tinant, J.N.H. Reek, I.E. Markó, IPr* 
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