Step-Economic and Protecting-Group-Free Total Synthesis of (+)-Cardiobutanolide

Rodney A. Fernandes* and Pullaiah Kattanguru ${ }^{[a]}$

Abstract

A short protecting-groupfree synthesis of $(+)$-cardiobutanolide is reported. We have modified a onepot conversion of D -glucono- δ-lactone into the building block β-hydroxy- γ lactone. A series of cross-metathesis reactions and dihydroxylations either under the Sharpless conditions or achiral 4-methylmorpholine N-oxide (NMO) conditions were used to syn-

thesize (+)-cardiobutanolide and its various diastereomers. In this endeavour, we have achieved a step-economic and protecting-group-free synthesis of (+)-cardiobutanolide in 22.4% overall yield from D-glucono- δ-lactone. A cross-metathesis reaction that is compatible with hydroxy groups and a substrate controlled Upjohn dihydroxylation reaction are key steps
in the synthesis. The synthesis is highly efficient and competitive with previous reports.

Keywords: asymmetric dihydroxylation • cardiobutanolide • crossmetathesis • natural products • styryllactones

Introduction

(+)-Cardiobutanolide (1), a styryllactone (Figure 1), was isolated from Goniothalamus cardiopetalus trees of the family Annonaceae in 2003 by Hisham et al. ${ }^{[1]}$ The plant family Annonaceae have yielded different types of natural products, such as acetoge-

Figure 1. Structure of $\mathbf{1}$. nins, ${ }^{[2]}$ isoquinoline alkaloids, ${ }^{[3]}$ and terpenoid compounds. ${ }^{[4]}$ Styryllactones are mainly isolated from the genus Goniothalamus and are known to have antitumor, teratogenic, pesticidal, cytotoxic, embryotoxic, and other biological activities. ${ }^{[5]}$ (+)-Cardiobutanolide is a target of synthetic interest. It contains a γ lactone and polyhydroxy groups, which account for five contiguous stereocenters. Nearly a decade after it was first isolated, there have been nine reported syntheses of cardiobutanolide and/or its diastereomers. ${ }^{[6]}$ The first synthesis was reported by Murga and co-workers. ${ }^{[6 a]}$ through an antiselective boronate aldol reaction of an l-erythrulose derivative in 9% overall yield. The synthesis by Yoda and Coworkers used D-glucuronolactone and involves a long synthetic route (9% overall yield). ${ }^{[66]}$ A synthesis from D-glucose derivative was reported by Krishna et al. ${ }^{[6]]}$ in 8% overall yield. This was followed by a formal synthesis by Singh and co-workers ${ }^{[6 d]}$ from a furanose derivative. Prasad et al. ${ }^{[6]]}$ developed a longer synthetic route from D-(-)-tartaric acid in 18% overall yield. The synthesis also involved inversion of configuration and multiple protecting groups. Krishna et al. ${ }^{[6 f]}$ then reported a non-sugar-based synthesis of $\mathbf{1}$ through Sharpless kinetic resolution, cross-metathesis, and Sharpless asymmetric dihydroxylation (2% overall yield). Yadav et al. ${ }^{[6 g]}$ developed a synthesis from the chiral pool material D-gluconolactone in 13% overall yield. A se-

[^0]quential double asymmetric dihydroxylation of a diene has been demonstrated by Chandrasekhar et al. ${ }^{[6 h]}$ to achieve the synthesis of $\mathbf{1}$ over a lengthy linear sequence in 5% overall yield. A recent synthesis by Pal and Shaw ${ }^{[6]}$ used a chiral building block approach starting from 3,4,6-tri- O -benzyl-d-glucal and involved cross-metathesis and asymmetric dihydroxylation as key steps (2% overall yield). A review of literature syntheses indicates that most strategies were designed with the use and/or replacement and removal of one or multiple protecting groups. The syntheses were dramatically lengthened by use of these protecting groups.
With the availability of many new synthetic methods, especially skeleton-constructing reactions with tolerance for various functional groups, protecting-group-free synthesis is practical and in high demand. ${ }^{[7]}$ With our interest in designing strategies for the total syntheses of natural products ${ }^{[8]}$ we became interested in the development of a protecting-group-free synthesis of $\mathbf{1}$ from the cheap and commercially available material d-glucono- δ-lactone. Our detailed retrosynthetic approach towards developing a protecting-groupfree synthesis of $\mathbf{1}$ is outlined in Scheme 1. Our approach is built on an interesting report by Song and Hollingsworth ${ }^{[9]}$ about a one-pot conversion of D-glucono- δ-lactone 7 into the key building block γ-lactone $\mathbf{3 a}$. We visualized a crossmetathesis of $\mathbf{3 a}$ would lead to $\mathbf{5}$ or $\mathbf{2}$ depending on the olefin partners 6 or 4, respectively. Asymmetric dihydroxylation of $\mathbf{5}$ (with or without protecting groups) would lead to $\mathbf{1}$. Similarly, asymmetric dihydroxylation and ketone reduction of $\mathbf{2}$ or the reverse sequence would also give $\mathbf{1}$. The strategy holds potential for the syntheses of analogues of $\mathbf{1}$, especially at the aryl end. Apart from the syntheses of analogues, stereochemical variation could also be possible by using enantiomers of $\mathbf{6}$ and/or 3a. ${ }^{[9]}$

Results and Discussion

The synthesis commenced with the conversion of $\mathbf{7}$ into the key building block γ-lactone 3a or 3b. The synthesis of 3a from D-mannitol over a lengthy sequence of ten steps is known. ${ }^{[6 f]}$ Song and Hollingsworth ${ }^{[9]}$ reported a promising 58% yield (25 g scale reaction of 7) in the one-pot conversion of 7 to $\mathbf{3 a}$. However, repetition of this reaction by Brimble and co-workers ${ }^{[10]}$ resulted in only a 7% yield after numerous attempts. Our efforts towards refinement of this

Scheme 1. Retrosynthesis of $\mathbf{1}$. TBDMS = tert-butyldimethylsilyl.
reaction are presented in Table 1. When the reported procedure ${ }^{[9]}$ was attempted, we encountered similar lower yields (Table 1, entry $1,12 \%$). The reaction was messy, involves froth formation and requires careful handling, espe-

Table 1. One-pot conversion of $\mathbf{7}$ into $\mathbf{3}$.

cially while adding Zn dust. When the Zn dust treatment was carried out at $0^{\circ} \mathrm{C}$ initially and then the reaction heated to reflux, the yield improved to 24% of $\mathbf{3 a}$ (Table 1, entry 2). However, when the HBr treatment was shortened to 1 h at $50^{\circ} \mathrm{C}$ instead of overnight reaction, ${ }^{[9]}$ the yield improved to 45% (Table 1, entry 3). A combination of HBr treatment at $50^{\circ} \mathrm{C}$ for 1 h and Zn dust addition at $-10^{\circ} \mathrm{C}$ over 1 h and then warming to room temperature over 2 h further improved the yield to 51% (Table 1, entry 4). This procedure was reproducible on less than four grams of 7. The β-hydroxy group of the crude product of the reaction in Table 1, entry 4 on protection with a silyl group gave 3b in 44% yield (Table 1, entry 5). When the reaction was washed with water and not treated with base, the γ-lactone 3c with an acetate group was obtained in 45% yield (Table 1, entry 6).

Further attempts to improve the yield were not successful. We could scale-up the reaction to 10 g of $\mathbf{7}$ (reactions conditions as in Table 1, entry 4) which gave 3a in 48% yield. The lactones $\mathbf{3 a}$ and $\mathbf{3 b}$ were used in the cross-metathesis reaction with a suitable olefin partner $\mathbf{4}, \mathbf{6 a}$, or $\mathbf{6 b}$. The results are shown in Table 2.

The cross-metathesis ${ }^{[11]}$ reaction of commercially available phenylvinyl ketone 4 with 3a did not occur with Grubbs second generation (G-II) catalyst (Table 2, entry 1). Compound 4 decomposed, whereas unreacted 3a was recovered. The reaction was achieved with the use of the Grubbs-Hoveyda ${ }^{[11 a, 12]}$ catalyst (G-H-II) to give 2a in 48% yield (Table 2, entry 2). Similarly, the reaction of $\mathbf{4}$ with $\mathbf{3 b}$ also worked with the G-H-II catalyst to give $\mathbf{2 b}$ in 41% yield (Table 2, entry 4). The reaction of commercially available 6a and unprotected 3a also occurred with only the G-H-II catalyst ($10 \mathrm{~mol} \%$) to provide 5a in 72% yield (Table 2, entry 6). In the reaction with G-II catalyst, $\mathbf{6 a}$ dimerized and 3a was recovered ${ }^{[13]}$ (entry 5). The reaction of $\mathbf{6 a}$ with 3b occurred with the G-II and G-H-II catalysts in 72% and 63% yields, respectively, to give 5b (Table 2, entries 7 and 8). When $\mathbf{6 b}$ was treated with $\mathbf{3 a}$ in the presence of the G-II or G-H-II catalysts, $\mathbf{5 c}$ was obtained in low yields of 12% and 18%, respectively (Table 2, entries 9 and 10). The reaction of $\mathbf{6 b}$ and $\mathbf{3 b}$ with the hydroxy groups protected, failed with the G-II catalyst and resulted in recovery of the starting materials (Table 2, entry 11). However, the reaction worked with the G-H-II catalyst, albeit with lower yield of 28% of $\mathbf{5 d}$ (Table 2, entry 12). The lower yield could be attributed to the bulky silyl groups in the vicinity of the double bonds in both $\mathbf{3 b}$ and $\mathbf{6 b}$, which results in steric crowding. The Grubbs first generation catalyst was ineffective for all of the above reactions.

With the skeletal structures $2 \mathbf{a}-\mathbf{b}$ and $\mathbf{5 a - d}$ in hand, we moved to introduce the remaining hydroxy groups. The Sharpless asymmetric dihydroxylation ${ }^{[14]}$ (SAD) of 2a gave a complex mixture with inseparable compounds (Scheme 2). We believe partial hemiacetal formation could lead to mixture of products. We planned to reduce the carbonyl group and then proceed with dihydroxylation. Towards this end, a (R)-(Me)-Corey-Bakshi-Shibata (CBS)

Table 2. Cross-metathesis of $\mathbf{3 a} / \mathbf{3}$ b with $\mathbf{4}, \mathbf{6 a}$ or $\mathbf{6}{ }^{\left[{ }^{[a]}\right.}$

[a] The G-I catalyst was ineffective in all cases. Unless otherwise mentioned, all reactions were carried out with catalyst ($5 \mathrm{~mol} \%$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux. [b] Whereas $\mathbf{4}$ decomposed, 3a or 3b were recovered. [c] Whereas 3a was recovered, 6a dimerized. [d] $10 \mathrm{~mol} \%$ of G-H-II catalyst was used. [e] Starting materials recovered. $N R=$ no reaction.
asymmetric reduction ${ }^{[15]}$ of $2 \mathbf{2}$ was executed. However, a conjugate addition occurred instead of ketone reduction to provide $\mathbf{8}$ in 92% yield. The chelation of the borane reagent with the free hydroxy group could be the reason for delivery of the hydride for conjugate addition. The SAD reaction of $\mathbf{2 b}$ gave 9a and $\mathbf{9 b}$ in a 1:3 diastereomeric ratio. ${ }^{[16]}$ These diastereoisomers could be efficiently separated to furnish 9a and 9b in 16 and 47% yields, respectively. When dihydroxylation was carried out without the (DHQD) 2_{2}-PHAL ligand and with NMO, the Upjohn process, ${ }^{[17]} \mathbf{9}$ a and $9 \mathbf{b}$ were formed in a $1: 10$ ratio $^{[16]}(57 \%$ combined yield). Thus, the former SAD reaction on $\mathbf{2 b}$ was a mismatched case, in which strong substrate control is evident from the latter reaction without the use of a ligand. ${ }^{[18]}$ The ketone of $\mathbf{9} \mathbf{a}$ was subjected to reduction with NaBH_{4} in the presence of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ to provide $\mathbf{1 0 a}$ in 90% yield. Similarly, the same reaction with 9b gave 10b in 91% yield. Other diastereomers were not isolated in this reduction reaction. ${ }^{[19]}$ Cleavage of the TBDMS group in 10a yielded 1 quantitatively $\left([\alpha]_{\mathrm{D}}^{25}=+7.6(c=0.2, \mathrm{MeOH})\right.$, lit. $\left.{ }^{[1]}[\alpha]_{\mathrm{D}}^{24}=+6.4(c=0.28, \mathrm{MeOH})\right)$. The spectral and ana-
lytical data of $\mathbf{1}$ are identical to that reported in the literature. ${ }^{[1,6 a, e]}$ Similarly, on removal of the TBDMS group, $\mathbf{1 0 b}$ provided the diastereomer $\mathbf{1 1}$ quantitatively.

The SAD reaction of $\mathbf{5 b}$ gave a mixture of $9 \mathbf{a}$ and $\mathbf{9 b}$ in a $1: 3$ ratio after 12 h (Scheme 3). We isolated $9 \mathbf{9}$ and $9 b$ in 21 and 65% yield respectively. The same reaction when carried out for a shorter time of 2 h gave keto-compound $\mathbf{2 b}$ in 65% yield. ${ }^{[20]}$ Thus, the oxidation of the benzylic hydroxy group occurred prior to dihydroxylation. The dihydroxylation reaction of $\mathbf{5 b}$ without the chiral ligand and using the Upjohn process ${ }^{[17]}$ gave $\mathbf{9 a}$ and $\mathbf{9 b}(51 \%)$ in a $1: 7$ ratio. In this case the benzylic alcohol oxidation also occurred. The reaction also confirmed a strong substrate control. ${ }^{[18]}$ We cross-checked the oxidation of the benzylic hydroxy group with the SAD reaction of $(\pm)-\mathbf{6 a}$. After a 12 h reaction we isolated a mixture of $(-)-\mathbf{1 2}^{[21]}$ and $\mathbf{1 3}$ (mixture of diastereomers) ${ }^{[22]}$ in 37 and 36% yield, respectively (Scheme 3). The dihydroxylation reaction of $\mathbf{5 c}$ was not attempted because of lower yields in its preparation by crossmetathesis (Table 2, entries 9 and 10)

From the SAD reaction of $\mathbf{5 d}$ with the (DHQD) $)_{2}$-PHAL ligand, we isolated three diastereomers 14a (31%), 14b (37%), and a minor unidentifiable diastereomer $\mathbf{1 4 c}$ (7%). This reaction is reported in the literature by Krishna et al. ${ }^{[6 f]}$ to give the two expected diastereomers in a 9:1 ratio. However, we noted discrepancies in the results we obtained in comparison with Krishna's report. The ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{1 4 b}$ and $\mathbf{1 4} \mathbf{c}$ matched exactly with the major and minor diastereomers reported by Krishna et al. ${ }^{[6]]}$ However, there was no description of $\mathbf{1 4 a}$. Further elaboration of $\mathbf{1 4 b}$ by cleavage of the silyl ether groups yielded the diastereomer $\mathbf{1 5}$ in quantitative yield, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of which matched with the data reported by Krishna for 1. ${ }^{[6 f]}$ As reported by Krishna et al., $\mathbf{1}$ has a signal at $\delta=83.7 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum, which corresponds to C5, which we also detected at $\delta=82.7 \mathrm{ppm}$ for $\mathbf{1 5}$. In the original report of its isolation, natural $\mathbf{1}$ has the same signal at 86.57 ppm . The earlier syntheses of $\mathbf{1}$ reported this peak as follows: Murga ${ }^{[6 a]}$ (86.6 ppm), $\operatorname{Prasad}^{[66]}(86.6 \mathrm{ppm}), \quad$ Yadav $^{[6 \mathrm{~g}]}$ (88.4 ppm), Chandrasekhar ${ }^{[66]}$ (86.7 ppm), and Shaw ${ }^{[6]]}$ (86.6 ppm). Thus, a difference of approximately $\Delta \delta=3.0 \mathrm{ppm}$ was detected for this peak in compound $\mathbf{1 5}$ relative to actual $\mathbf{1}$. On the contrary, we found that the diastereomer 14a quantitatively gave 1 after deprotection of the silyl groups. The signal at $\delta=86.7 \mathrm{ppm}$ and all data exactly match the original isolation report as well other syntheses. ${ }^{[1,6 a, e, g, \mathrm{~h}, \mathrm{i}]}$

Thus, we believe that Krishna et al. ${ }^{[6 f]}$ did not isolate the chromatographically late-eluting diastereomer 14a in the SAD reaction of 5d (see the Experimental Section) but reported $\mathbf{1 4 b}$ and $\mathbf{1 4} \mathbf{c}$ with incorrect assignment of structure, and that $\mathbf{1 4 b}$ gives $\mathbf{1}$. As pure diastereomer $\mathbf{5 d}$ cannot give three products in the SAD reaction, we consider $\mathbf{1 4} \mathbf{c}$ to arise from the minor Z diastereomer of $\mathbf{5 d}$ (which might be formed during the cross-metathesis reaction in a trace amount, though not detected in the NMR spectra) or by some other reaction. But we could not unambiguously

OF ORGANIC CHEMISTRY

Scheme 2 . SAD reaction of $\mathbf{2 a}$ and $\mathbf{2 b}$ and synthesis of $\mathbf{1}$.
assign the absolute structure for $\mathbf{1 4 c}$. We also observed a mismatch in the SAD reaction, wherein $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ were formed in a 1:1.2 ratio. The dihydroxylation reaction of $\mathbf{5 d}$ without the chiral ligand but with NMO gave 14a (15%) and $\mathbf{1 4 b}$ (47%) in a 1:3 ratio, which confirms substrate control (Scheme 3). ${ }^{[18]}$
For a practical, step-economic, and protecting-group-free synthesis of 1, we used 5a, as shown in Scheme 4. The SAD reaction of $\mathbf{5 a}$ under standard Sharpless conditions with the (DHQD) $)_{2}$-PHAL ligand for 12 h at $0^{\circ} \mathrm{C}$ gave a complex mixture of inseparable products. However, when the reaction time was reduced to 2 h we obtained the benzylic alcohol oxidation product 2a in 92% yield rather than dihydroxylation products. The dihydroxylation of $\mathbf{5 a}$ without the Sharpless conditions but with NMO gave a diastereomeric mixture ($\mathbf{1 5} / \mathbf{1}, \mathrm{dr}=1: 4$) from which we isolated $\mathbf{1 5}$ in 15% yield and $\mathbf{1}$ in 61% yield. We believe that the substrate control is more from the benzylic alcohol part than the lactone part in compound $\mathbf{5 a}$, where $\mathbf{1}$ is the major product.

Conclusions

In conclusion we have demonstrated a reliable modification of one-pot conversion of D -glucono- δ-lactone into the β-hy-droxy- γ-lactone 3. Further, a series of cross-metathesis reactions were carried out to construct the olefins that are the skeletal structures of cardiobutanolide. These olefins were subjected to a dihydroxylation reaction either under Sharpless conditions or achiral NMO conditions. Some of the intermediates were efficiently converted into $\mathbf{1}$ and its various diastereomers. Finally, we have achieved a practical, step-economic, and protecting-group-free synthesis of $\boldsymbol{1}^{[23]}$ in 22.4% overall yield from d-glucono- δ-lactone. A crossmetathesis reaction between 3a and 6a that is compatible with hydroxy groups and a substrate-controlled dihydroxylation reaction are key steps in the synthesis. The synthesis is highly efficient and competitive with previous reports in literature.

OF ORGANIC CHEMISTRY

Reaction conditions	14a/14b/14c	Isolated yields
(DHQD) ${ }_{2} \mathrm{PHAL}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{tBuOH}$ $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 48 \mathrm{~h}$	1:1.2:0.22	14a (31\%), 14b (37\%), 14c (7\%)
$\begin{aligned} & \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NMO}, \text { acetone } / \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{RT}, 24 \mathrm{~h} \end{aligned}$	1:3:0	14a (15\%), 14b (47\%)

(+)-cardiobutanolide 1

15

Scheme 3. SAD reaction of $\mathbf{5 b}$ and $\mathbf{5 d}$ and synthesis of $\mathbf{1}$.

Experimental Section

General Information

Flasks were oven or flame dried and cooled in a desiccator. Anhydrous reactions were carried out under an atmosphere of Ar or N_{2}. Solvents and reagents were purified by standard methods. Zn powder was obtained from a local commercial source and was 325 mesh. Thin layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO_{4} or by UV lamp. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively, and chemical shifts are based on the tetramethylsilane signal at $\delta=0.00 \mathrm{pm}$ for ${ }^{1} \mathrm{H}$ NMR spectra and the CDCl_{3} signal at $\delta=77.00 \mathrm{ppm}$ (t) or the $\left[\mathrm{D}_{6}\right]$ acetone signal at 29.80 ppm (septet) in ${ }^{13} \mathrm{C}$ NMR spectra. IR samples were prepared by evaporation from
CHCl_{3} on CsBr plates or as KBr pellets. High-resolution mass spectra were obtained in positive electrospray ionization mode.

$$
(4 R, 5 R) \text {-4-Hydroxy-5-vinyldihydrofuran-2(3 H)-one }(\mathbf{3} \boldsymbol{a})
$$

Reaction conditions were as stated in Table 1, entry 4. Hydrogen bromide in acetic acid (HBA, $33 \%, 16 \mathrm{~mL}$) was added to $7(4.0 \mathrm{~g}$, 22.45 mmol) and the reaction mixture stirred at $50^{\circ} \mathrm{C}$ for 1 h . The mixture was then cooled to room temperature and excess HBA was removed under reduced pressure. The resultant syrupy liquid was dissolved in 50% aqueous acetic acid (40 mL), then cooled to $-10^{\circ} \mathrm{C}$ and zinc powder ($8.07 \mathrm{~g}, 123.49 \mathrm{mmol}$, 5.5 equiv) was added in portions over 1 h at $-10^{\circ} \mathrm{C}$. The mixture was stirred and warmed to room temperature over 2 h and then heated to $60^{\circ} \mathrm{C}$ for an additional 1 h . The mixture was then filtered and the filtrate concentrated under reduced pressure. The residue was dissolved in water $(30 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and the pH ad-

OF ORGANIC CHEMISTRY

Scheme 4. Protecting-group-free synthesis of $\mathbf{1}$.
justed to 10 by slow addition of KOH pellets to precipitate the remaining zinc as the insoluble hydroxide and to affect C3 deacetylation. After filtration, the basic filtrate was acidified to pH 5 with concentrated hydrochloric acid at $0^{\circ} \mathrm{C}$. Water was removed under reduced pressure and the residue was dissolved in cold ethanol. Precipitated potassium chloride was removed by filtration and the filtrate was concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (1:1) as eluent to give 3a (1.46 g, 51%). $[\alpha]_{\mathrm{D}}^{25}=+$ $45.3\left(c=0.8, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{[9]}[\alpha]_{\mathrm{D}}=+43\left(c=1.15, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right):$ $\tilde{\nu}_{\max }=3447,2934,1771,1639,1432,1413,1333,1309,1203,1158,1080$, 1017, 990, 962, 901, 884, 833, $796 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.01-5.92 (m, 1H), 5.59-5.49 (m, 2H), 4.94-4.91 (m, 1H), 4.56-4.53 (m, $1 \mathrm{H}), 2.80$ (dd, $J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,130.2$, 120.6, 84.9, 69.4, 38.6 ppm ; HRMS: m/z: calcd for $\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 129.0552; found: 129.0551 .
(4R,5R)-4-tert-Butyldimethylsilyloxy-5-vinyldihydrofuran-2(3H)-one (3 b)

By using similar procedure as above with 7, 4.0 g , the crude hydroxy lactone $\mathbf{3 a}(1.70 \mathrm{~g}, 13.27 \mathrm{mmol})$ obtained was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, then imidazole ($1.80 \mathrm{~g}, 26.54 \mathrm{mmol}, 2.0$ equiv) and tertbutyldimethylsilyl chloride ($2.99 \mathrm{~g}, 19.90 \mathrm{mmol}, 1.5$ equiv) were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (9:1) as eluent to afford $\mathbf{3 b}(2.38 \mathrm{~g}, 44 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{25}=+$ $15.9\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=2956,2932,2859,1781,1473$, 1259, 1206, 1149, 1096, 1029, 946, 841, $779 \mathrm{~cm}^{-1} ;{ }^{1}$ H NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dd}, J=7.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.37$ (m, 1H), 2.61 (dd, $J=17.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (dd $J=17.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.06 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2,131.8,119.9,85.4,70.7,39.3$, 25.6, 18.0, $-4.9,-5.0 \mathrm{ppm}$; HRMS: m / z : calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}+\mathrm{H}\right]^{+}$: 243.1415; found: 243.1418 .
(4R,5R)-4-Acetyloxy-5-vinyldihydrofuran-2(3H)-one (3 c)
Reaction conditions were as stated in Table 1, entry 6. HBA in acetic acid $(33 \%, 16 \mathrm{~mL})$ was added to $7(4.0 \mathrm{~g}, 22.45 \mathrm{mmol})$ and the reaction mixture stirred at $50^{\circ} \mathrm{C}$ for 1 h . The mixture was then cooled to room temperature, excess HBA was removed under reduced pressure. The resultant syrupy liquid was dissolved in 50% aqueous acetic acid (40 mL), then cooled to $-10^{\circ} \mathrm{C}$ and zinc powder ($8.07 \mathrm{~g}, 123.49 \mathrm{mmol}, 5.5$ equiv) was added in portions over 1 h at $-10^{\circ} \mathrm{C}$. The mixture was warmed to
room temperature over 2 h and then heated to $60^{\circ} \mathrm{C}$ for an additional 1 h . The mixture was then filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (7:3) as eluent to give $\mathbf{3 c}(1.72 \mathrm{~g}, 45 \%) .[\alpha]_{\mathrm{D}}^{25}=+29.6(c=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3091,2998,2938,1789,1747,1649,1432$, $1375,1237,1149,1062,990,942,903,761,708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.88-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.39$ (dd, $J=10.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{td}, J=4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=18.2,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{dd}, J=18.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.7,169.8,129.5,120.5,82.7,70.8,35.9$, 20.7 ppm ; HRMS: m/z: calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 171.0657; found: 171.0652.

General Procedure for Cross-Metathesis Reactions

G-H-II, G-II, or G-I catalyst ($5 \mathrm{~mol} \%$) was added to a stirred and degassed solution of $\mathbf{3 a - b}$ (1 equiv) and $\mathbf{4}$ or $\mathbf{6 a - b}$ (1.2-5.0 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and the mixture stirred at reflux for $48-144 \mathrm{~h}$. The mixture was cooled to room temperature, filtered through a small pad of silica gel, and the filtrate concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc to give $\mathbf{2 a - b}$ or $\mathbf{5 a - d}$ (for yields see Table 2). The Z isomer was not formed within the detectable limit of the ${ }^{1} \mathrm{H}$ NMR spectra of the isolated products. The G-I catalyst was ineffective in cross-metathesis reaction in all cases.

(4R,5R)-4-Hydroxy-5-[(E)-3-oxo-3-phenylprop-1-en-1-yl]dihydrofuran-2(3H)-one (2 a)

The reaction of $\mathbf{3 a}(50 \mathrm{mg}, 0.39 \mathrm{mmol}), \mathbf{4}(260 \mathrm{mg}, 1.95 \mathrm{mmol}, 5.0$ equiv), and the G-H-II catalyst ($12.2 \mathrm{mg}, 0.0195 \mathrm{mmol}, 5 \mathrm{~mol} \%$) gave $\mathbf{2 a}$ $(43.6 \mathrm{mg}, 48 \%)$ as a colorless solid: m.p. $148-150^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+39.3(c=$ $0.3, \mathrm{MeOH}$); IR (KBr): $\tilde{v}_{\max }=3407,1777,1623,1382,1315,1276,1197$, 1161, 1134, 1073, 975, 895, 775, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{dd}, J=15.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=15.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (td, $J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.77 (ddd, $J=5.3,3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=$ $17.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dd, $J=17.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=189.9,174.7,138.6,136.7,133.7$, 128.9, 128.8, 127.6, 83.0, 69.4, 38.5 ppm ; HRMS: m/z: calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 233.0814 ; found: 233.0823.
(4R,5R)-4-tert-Butyldimethylsilyloxy-5-[(E)-3-oxo-3-phenylprop-1-en-1-ylddihydrofuran-2(3H)-one (2 b)

The reaction of $\mathbf{3 b}(20 \mathrm{mg}, 0.082 \mathrm{mmol}), 4(22 \mathrm{mg}, 0.165 \mathrm{mmol}$, 2.0 equiv), and the G-H-II catalyst ($2.6 \mathrm{mg}, 0.004 \mathrm{mmol}, 5 \mathrm{~mol} \%$) gave 2b $(11.7 \mathrm{mg}, 41 \%)$ as a yellow solid: m.p. $74-76^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+35.1(c=$ $0.5, \mathrm{CHCl}_{3}$); IR (KBr): $\tilde{v}_{\max }=2931,2858,1770,1674,1629,1270,1203$, $1158,1098,1038,919,835,778,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.99-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}$, $J=15.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (td, $J=4.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.66(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=17.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}$, $J=17.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=189.2,174.6,139.8,137.1,133.2,128.7$, 128.6, 126.9, 83.2, 70.3, 39.2, 25.6, 25.5, 17.9, $-5.0,-5.1 \mathrm{ppm}$; HRMS: $m /$ z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}\right]^{+}$: 347.1679 ; found: 347.1673.
(4R,5R)-4-Hydroxy-5-[(S,E)-3-hydroxy-3-phenylprop-1-en-1$y l] d i h y d r o f u r a n-2(3 H)$-one (5a)
The reaction of 3a $(130 \mathrm{mg}, 1.01 \mathrm{mmol})$, (S) -phenylvinyl carbinol $\mathbf{6 a}$ ($204 \mathrm{mg}, 1.52 \mathrm{mmol}$, 1.5 equiv), and the G-H-II catalyst $(63.3 \mathrm{mg}$, $0.101 \mathrm{mmol}, 10 \mathrm{~mol} \%$) gave 5a ($171 \mathrm{mg}, 72 \%$) as a colorless soild: m.p. $83-85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+6.2\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3425$, $2925,2854,1777,1493,1454,1405,1328,1162,1076,1016,970,906,761$, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.14$ (ddd, $J=15.7,5.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (ddd, $J=15.7,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94 (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.78 (dd, $J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $2.62 \mathrm{ppm}(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 176.3 , 141.7, 137.8, 128.6, 127.9, 126.5, 126.4, 123.3, 84.4, 73.7, 69.8, 38.5 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 257.0790$; found: 257.0793.
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(S,E)-3-hydroxy-3-phenylprop-1-en-1-yl]dihydrofuran-2(3H)-one (5b)

The reaction of $\mathbf{3 b}(300 \mathrm{mg}, 1.24 \mathrm{mmol}),(S)$-phenylvinylcarbinol $\mathbf{6 a}$ ($200 \mathrm{mg}, \quad 1.49 \mathrm{mmol}, 1.2$ equiv), and the G-II catalyst $(52.6 \mathrm{mg}$, $0.062 \mathrm{mmol}, 5 \mathrm{~mol} \%$) gave 5b ($310 \mathrm{mg}, 72 \%$) as colorless solid: m.p. $99-101{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+8.8\left(c=0.4, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3450$, 2955, 2930, 2858, 1784, 1464, 1259, 1215, 1161, 1096, 1025, 974, 954, 906, $840,760,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H})$, 6.08 (ddd, $J=15.6,5.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (ddd, $J=15.6,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.47(\mathrm{~m}$, 1 H), 2.72 (dd, $J=17.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (dd, $J=17.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=175.3,142.0,138.1,128.5,127.8,126.3,123.8,84.7,73.9,70.6$, $39.4, \quad 25.5, \quad 18.0,-4.96,-5.0 \mathrm{ppm}$; HRMS: $\mathrm{m} / \mathrm{z}:$ calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right]^{+}: 371.1655$; found: 371.1662
(4R,5R)-5-[(S,E)-3-(tert-Butyldimethylsilyloxy)-3-phenylprop-1-en-1yl]-4-hydroxydihydrofuran-2(3H)-one (5c)

The reaction of $\mathbf{3 a}(20 \mathrm{mg}, 0.156 \mathrm{mmol}), \mathbf{6 b}(46 \mathrm{mg}, 0.187 \mathrm{mmol}$, 1.2 equiv), and the G-H-II catalyst ($4.9 \mathrm{mg}, 0.0078 \mathrm{mmol}, 5 \mathrm{~mol} \%$) gave 5c ($9.8 \mathrm{mg}, 18 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}^{25}=-20.1 \quad\left(c=0.2, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\text {max }}=3465,2929,2857,1773,1638,1472,1258,1163,1118$, 1017, 907, 877, 838, 760, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.15$ (ddd, $J=15.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=$ $15.5,6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.50$ (td, $J=4.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (dd, $J=17.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=$ $17.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $-0.01 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.1,142.7,140.5$, $128.4,127.5,125.9,120.1,83.7,74.3,69.6,38.6,25.8,18.3,-4.8$, -4.9 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right]^{+}: 371.1655$; found: 371.1664.
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(S,E)-3-(tert-
butyldimethylsilyloxy)-3-phenylprop-1-en-1-yl]dihydrofuran-2(3H)-one (5d)

The reaction of $\mathbf{3 b}(30 \mathrm{mg}, 0.124 \mathrm{mmol}), \mathbf{6 b}(46 \mathrm{mg}, 0.185 \mathrm{mmol}$, 1.5 equiv), and the G-H-II catalyst ($3.9 \mathrm{mg}, 0.0062 \mathrm{mmol}, 5 \mathrm{~mol} \%$) gave

5d ($16 \mathrm{mg}, 28 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}^{25}=-44.1\left(c=0.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\max }=3028,2956,2930,2887,2858,1790,1464,1472,1362$, $1258,1204,1159,1121,1026,973,952,905,880,838,776,758,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.97-5.96(\mathrm{~m}, 2 \mathrm{H})$, $5.25(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=7.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.40(\mathrm{~m}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.90$ $(\mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.06 \mathrm{ppm}$ (s, 3 H) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.3,143.0,140.3,128.2$, 127.2, 126.0, 121.1, 85.2, 74.3, 70.8, 39.5, 25.8, 25.7, 18.2, 18.0, -4.9, $-4.94,-5.0 \mathrm{ppm}$; HRMS: m/z: calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}$: 485.2519; found: 485.2511 .
(4R,5R)-4-Hydroxy-5-(3-oxo-3-phenylpropyl)dihydrofuran-2(3 H)-one (8):
$\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(0.05 \mathrm{~mL}, 0.516 \mathrm{mmol}, 1.2$ equiv) was added to a stirred solution of (R)-2-methyl-CBS-oxazaborolidine $(1.0 \mathrm{~m}$ solution in toluene, $0.52 \mathrm{~mL}, 0.52 \mathrm{mmol}, 1.2$ equiv) in anhydrous THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the solution was cooled to $-20^{\circ} \mathrm{C}$ and a solution of 2a ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) in anhydrous THF (5 mL) was added dropwise over 10 min . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ over 1 h and then quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$. The solution was stirred for 15 min at room temperature and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (1:1) as eluent to afford $8(92.8 \mathrm{mg}, 92 \%)$ as colorless solid: m.p. 121- $123^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+52.9\left(c=0.75, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\max }=3398,2929,2857$, $1770,1679,1598,1449,1407,1203,1161,1079,1025,982,883,756$, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dt}, J=$ $18.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.25-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (dd, $J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.2,175.8,136.2,133.7,128.7,128.1$, 84.5, 68.6, 39.0, 34.4, 22.0 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 235.0970; found: 235.0979.
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(1S,2S)-1,2-dihydroxy-3-oxo-3-phenylpropylldihydrofuran-2(3H)-one (9a) and (4R,5R)-4-(tert-butyldimethylsilyloxy)-5-[(1R,2R)-1,2-dihydroxy-3-oxo-3-
phenylpropyl]dihydrofuran-2(3H)-one (9b)
$\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.53 \mathrm{mg}, 0.00145 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ was added to a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(334 \mathrm{mg}, 1.015 \mathrm{mmol}, 3.5\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}$, $1.015 \mathrm{mmol}, 3.5$ equiv) and (DHQD) $)_{2} \mathrm{PHAL}(2.5 \mathrm{mg}, 0.0032 \mathrm{mmol}$, $1.1 \mathrm{~mol} \%)$ in $t \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,4 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ followed by methanesulfonamide ($30.3 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.1$ equiv). After stirring for 5 min at $0^{\circ} \mathrm{C}, \mathbf{2 b}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The stirring was continued for an additional 45 min and the solution was extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{KOH}(2 \mathrm{~N})$, water, brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (4:1) as eluent to give $\mathbf{9 b}(52 \mathrm{mg}, 47 \%)$ as a white solid. Further elution gave $9 \mathbf{a}(17 \mathrm{mg}, 16 \%)$ as a colorless oil. Data for 9a: $[\alpha]_{\mathrm{D}}^{25}=+18.7\left(c=0.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3456,2950,2931,2859,1790,1689,1599,1472,1409$, 1264, 1210, 1162, 1126, 1087, 1030, 981, 947, 840, 779, 745, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.21-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}$, $J=6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (dd, $J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (br s, 1H, OH), 2.80 (dd, $J=17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dd, $J=17.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (br s, $1 \mathrm{H}, \mathrm{OH}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.19 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.6,174.2,134.1,133.7,128.8,128.6,128.56$, 84.5, 73.2, 71.6, 69.5, 39.7, 25.7, 25.3, 17.9, -4.3, -4.6 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}+\mathrm{H}\right]^{+}$: 381.1733; found: 381.1732. Data for 9b: m.p. $136-138^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-19.4\left(c=0.6, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3368$, 2930, 2857, 1795, 1693, 1407, 1267, 1200, 1146, 1113, 1091, 1040, 983, 874, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94-7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (dd, $J=4.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.78$ (dd, $J=17.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $0.67(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.10 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=199.6,175.0,134.2,132.9,129.0,128.6,82.5,73.2,68.6,68.5$, 39.9, 25.3, 17.7, $-4.8,-5.7 \mathrm{ppm}$; HRMS: m / z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}+\mathrm{H}\right]^{+}: 381.1733$; found: 381.1726.

Dihydroxylation of $2 \boldsymbol{b}$ Under Upjohn Conditions ${ }^{[17]}$ to give $9 \boldsymbol{a}$ and $9 \boldsymbol{b}$

NMO ($16.9 \mathrm{mg}, 0.144 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.33 \mathrm{mg}$, $0.0036 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were added to a solution of $\mathbf{2 b}(25 \mathrm{mg}$, $0.072 \mathrm{mmol})$ in acetone/water ($4: 1,2 \mathrm{~mL}$) at room temperature and stirred for 24 h . The mixture was then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and stirred for 1 h . Water was added and the solution was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (3:1) as eluent to afford a mixture of $\mathbf{9} \mathbf{a}$ and $\mathbf{9 b}(15.6 \mathrm{mg}, 57 \%)$ as waxy solid. Analysis of this mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated $\mathbf{9} \mathbf{a}$ $\mathbf{9 b}=1: 10$.
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(1S,2R,3R)-1,2,3-trihydroxy-3 phenylpropyl]dihydrofuran-2(3H)-one (10a)
Cerium chloride heptahydrate ($30 \mathrm{mg}, 0.079 \mathrm{mmol}, 1.2$ equiv) was added to a stirred solution of $\mathbf{9 a}(25 \mathrm{mg}, 0.066 \mathrm{mmol})$ in methanol $(2 \mathrm{~mL})$ at room temperature and then cooled to $-78^{\circ} \mathrm{C}$. Sodium borohydride ($3.0 \mathrm{mg}, 0.079 \mathrm{mmol}, 1.2$ equiv) was added in one portion and stirred for 30 min . After warming to room temperature, the reaction was quenched with water $(3 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (1:1) as eluent to give $\mathbf{1 0 a}(22.6 \mathrm{mg}, 90 \%$) as a white solid: m.p. $110-112{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-12.4\left(c=0.3, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=3447,3019,2930,2857,1778,1464,1258,1216,1164$, 1097, 1027, 947, 915, 840, 806, 760, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}$, $1 \mathrm{H}), 4.49(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (br s, 1H, OH), 3.22 (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.85 (br s, 1 H , $\mathrm{OH}), 2.70(\mathrm{dd}, J=17.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=17.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.80$ $(\mathrm{s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=174.6,140.4,128.7,128.1,126.3,84.3,75.9,73.4,69.3,69.2,39.2,25.5$, 17.7, $-4.6,-5.0 \mathrm{ppm}$; HRMS: m / z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{H}\right]^{+}$: 383.1890; found: 383.1895 .
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(1R,2S,3S)-1,2,3-trihydroxy-3-phenylpropyl]dihydrofuran-2(3H)-one (10b)

The title compound was prepared from $\mathbf{9 b}$ ($55 \mathrm{mg}, 0.145 \mathrm{mmol}$) by a similar procedure as described for $\mathbf{1 0 a}$, to give $\mathbf{1 0 b}(50.3 \mathrm{mg}, 91 \%)$ as a white solid: m.p. $114-115^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{25}=+25.0 \quad\left(c=1.0, \quad \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\text {max }}=3432,2930,2858,1775,1411,1255,1208,1161,1092$, 1039, 954, $906,839,779,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.05(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (dd, $J=9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (d, $J=3.8 \mathrm{~Hz}$, 1 H), 3.14 (br s, 2H, OH), 2.97 (br s, $1 \mathrm{H}, \mathrm{OH}$), $2.64(\mathrm{dd}, J=17.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05 \mathrm{ppm}(\mathrm{s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.7,140.0,128.6,127.8,125.8$, 81.9, 77.1, 72.7, 68.5, 66.7, 39.7, 25.5, 25.47, 17.8, -4.9 , -5.3 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{H}\right]^{+}: 383.1890$; found: 383.1893.

(4R,5S)-4-Hydroxy-5-[(1S,2R,3R)-1,2,3-trihydroxy-3-
 phenylpropyl]dihydrofuran-2(3H)-one, (+)-cardiobutanolide (1)

Amberlyst 15 resin (10 mg) was added to a stirred solution of $\mathbf{1 0}$ a $(13 \mathrm{mg}, 0.034 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was then warmed to room temperature and stirred for 12 h . The mixture was filtered through a small pad of celite and washed with EtOAc $(30 \mathrm{~mL})$. The filtrate was concentrated to give virtually pure $\mathbf{1}(9.1 \mathrm{mg}$, quant) as a colorless solid: m.p. $190-191^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{25}=+7.6 \quad(c=0.2$, $\mathrm{MeOH})$, lit. ${ }^{[1]}$ m.p. $189-190^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{24}=+6.4(c=0.28, \mathrm{MeOH}) ;$ IR (KBr) : $\tilde{\nu}_{\max }=3517,3478,3377,2925,2853,1759,1638,1455,1373,1275,1209$, $1169,1106,1078,1056,1028,1012,986,917,858,790,774,774,702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}$,
$J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 ppm (dd, $J=17.2, \quad 0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \quad\left[\mathrm{D}_{6}\right]\right.$ acetone $) ; ~ \delta=176.3$, 144.2, 128.6, 127.9, 127.8, 86.7, 75.3, 74.0, 70.1, 68.5, 40.4 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$: 291.0845; found: 291.0851.
(4R,5S)-4-Hydroxy-5-[(1R,2S,3S)-1,2,3-trihydroxy-3-
phenylpropyl]dihydrofuran-2(3H)-one (11)
The title compound was prepared from $\mathbf{1 0 b}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ by a similar procedure as described for 1, to give $\mathbf{1 1}(35 \mathrm{mg}$, quant) as a white solid: m.p. $155-156^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+47.4(c=0.5, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr}): \tilde{v}_{\max }=$ 3427, 2925, 2854, 1757, 1605, 1443, 1336, 1295, 1233, 1171, 1109, 1011, 906, 768, $705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=7.44$ (d, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.64(\mathrm{dd}, J=4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (br s, $1 \mathrm{H}, \mathrm{OH}), 4.47$ (dd, $J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.20$ (br s, $1 \mathrm{H}, \mathrm{OH}), 3.90-3.86(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{OH}), 3.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}$, $J=17.3, \quad 5.2 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 2.35 \mathrm{ppm} \quad(\mathrm{d}, \quad J=17.3 \mathrm{~Hz}, \quad 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=176.3,144.3,128.7,127.8,82.7,75.2,74.6$, 68.6, 67.7, 39.6 ppm ; HRMS: $m / z:$ calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$: 291.0845; found: 291.0834.

Sharpless Asymmetric Dihydroxylation of $\mathbf{5 b}$ to afford $9 \boldsymbol{a}$ and $9 \boldsymbol{b}$

$\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.126 \mathrm{mg}, 0.000344 \mathrm{mmol}, 0.4 \mathrm{~mol} \%)$ was added to a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(85.6 \mathrm{mg}, 0.26 \mathrm{mmol}, 3.0\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(35.9 \mathrm{mg}$, $0.26 \mathrm{mmol}, 3.0$ equiv) and (DHQD) ${ }_{2} \mathrm{PHAL}(0.67 \mathrm{mg}, 0.00086 \mathrm{mmol}$, $1 \mathrm{~mol} \%)$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$, cooled at $0^{\circ} \mathrm{C}$ followed by methanesulfonamide ($8.2 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min at $0^{\circ} \mathrm{C}, \mathbf{5 b}(30 \mathrm{mg}, 0.086 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The stirring was continued for an additional 45 min and the solution extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{KOH}(2 \mathrm{~N})$, water and brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (4:1) as eluent to give 9b $(21.3 \mathrm{mg}, 65 \%)$ as a colorless solid. Further elution gave 9a (6.9 mg , $21 \%)$ as a colorless oil. 9a: $[\alpha]_{\mathrm{D}}^{25}=+18.4\left(c=0.2, \mathrm{CHCl}_{3}\right) ; \mathbf{9 b}:[\alpha]_{\mathrm{D}}^{25}=$ $-19.0\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

Dihydroxylation of $\mathbf{5 b}$ under Upjohn Conditions ${ }^{[17]}$ to give $9 \boldsymbol{a}$ and $9 \boldsymbol{b}$

NMO ($20.2 \mathrm{mg}, 0.172 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{mg}$, $0.0043 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added to a solution of $\mathbf{5 b}(30 \mathrm{mg}$, $0.086 \mathrm{mmol})$ in acetone/water ($4: 1,1.2 \mathrm{~mL}$) at room temperature and stirred for 12 h . The mixture was then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and stirred for 1 h . Water was added and the solution extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (3:1) as eluent to afford a mixture of $\mathbf{9}$ a and $\mathbf{9 b}(16.7 \mathrm{mg}, 51 \%)$ as a waxy solid. Analysis of this mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated $\mathbf{9} \mathbf{a} / \mathbf{9} \mathbf{b}=1: 7$.

Sharpless Dihydroxylation of $(\pm)-\boldsymbol{\sigma} \boldsymbol{a}$

$\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.4 \mathrm{~mol} \%)$ was added to a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \quad\left(736 \mathrm{mg}, \quad 2.235 \mathrm{mmol}, \quad 3.0\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(309 \mathrm{mg}$, $2.235 \mathrm{mmol}, 3.0$ equiv) and (DHQD) $)_{2} \mathrm{PHAL}(5.8 \mathrm{mg}, 0.00745 \mathrm{mmol}$, $1 \mathrm{~mol} \%$) in $t \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,8 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ followed by methanesulfonamide ($71 \mathrm{mg}, 0.745 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min at $0^{\circ} \mathrm{C},(\pm)-6 \mathbf{a}(100 \mathrm{mg}, 0.745 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The stirring was continued for an additional 45 min and the solution extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{KOH}(2 \mathrm{~N})$, water, and brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (1:1) as eluent to give $(-)-\mathbf{1 2}^{[21]}$ ($46 \mathrm{mg}, 37 \%$) as a colorless solid and further elution provided $\mathbf{1 3}^{[22]}$ $(45 \mathrm{mg}, 36 \%)$ as a colorless oil. Data for $(-)-\mathbf{1 2}::^{[21]} \mathrm{Mp} 80-82^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=$ $-33.6\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ lit. ${ }^{[21]}$ for (R)-enantiomer, $[\alpha]_{\mathrm{D}}^{23}=+72.1 \quad(c=8.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\text {max }}=3447,3066,2928,2884,1686,1597,1580$,

1450, 1401, 1319, 1264, 1229, 1182, 1118, 1603, 1002, 978, 962, 885, 847 $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$), 4.02 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, $J=11.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.22 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.4,134.3$, 133.4, 129.0, 128.5, 74.6, 65.3 ppm . Data for 13: ${ }^{[22]}$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}_{\max }=$ 3401, 1647, 1456, 1316, 1217, 1154, 1106, 1031, $769 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): mixture of diastereomers (ca. 1:1), $\delta=7.30-7.25(\mathrm{~m}$, $10 \mathrm{H}), 4.78$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, OH), 3.95 (br s, $2 \mathrm{H}, \mathrm{OH}$), 3.74 (br d, 3 H), 3.64-3.60 (m, 3H), 3.56$3.36 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): mixture of diastereomers (ca. 1:1), $\delta=140.5,140.4,128.4,128.3,128.0,127.6,126.7,126.3$, 76.0, 75.2, 74.9, 74.6, 63.0, 62.5 ppm .
(4R,5R)-4-(tert-Butyldimethylsilyloxy)-5-[(1S,2S,3R)-3-(tert-butyldimethylsilyloxy)-1,2-dihydroxy-3-phenylpropyl]dihydrofuran$2(3 H)$-one (14a) and (4R,5R)-4-(tert-butyldimethylsilyloxy)-5-[(1R,2R,3R)-3-(tert-butyldimethylsilyloxy)-1,2-dihydroxy-3-phenylpropyl]dihydrofuran-2(3H)-one (14 b)
$\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.55 \mathrm{mg}, 0.0015 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$ was added to a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \quad\left(300 \mathrm{mg}, \quad 0.907 \mathrm{mmol}, \quad 6.0\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(126 \mathrm{mg}$, $0.907 \mathrm{mmol}, 6.0$ equiv) and (DHQD) ${ }_{2} \mathrm{PHAL}(4.7 \mathrm{mg}, \quad 0.006 \mathrm{mmol}$, $4.0 \mathrm{~mol} \%)$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$, followed by methanesulfonamide ($14 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min at $0^{\circ} \mathrm{C}$, the solution of $\mathbf{5 d}(70 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $t \mathrm{BuOH}(1 \mathrm{~mL})$ was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 48 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The stirring was continued for an additional 45 min and the solution extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{KOH}(2 \mathrm{~N})$, water, and brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (5:1) as eluent to give $\mathbf{1 4 b}(28 \mathrm{mg}, 37 \%)$ as colorless oil. Further elution with petroleum ether/EtOAc (4:1) gave $\mathbf{1 4 c}(5.2 \mathrm{mg}, 7 \%)$ as colorless oil. Elution then with petroleum ether/EtOAc (7:3) gave 14a (23.3 g , $31 \%)$ as a colorless oil. Data for $\mathbf{1 4 a}:[\alpha]_{\mathrm{D}}^{25}=-40.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\text {max }}=3461,3020,2957,2931,2859,1779,1472,1405,1388$, $1362,1258,1216,1163,1097,1061,1023,948,860,839,806,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=5.8,1.6 \mathrm{~Hz}$, 1 H), $3.72-3.67$ (m, 1H), 3.06 (br s, 1H, OH), 2.67 (dd, $J=17.2,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.16 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,141.3,128.5,128.0,127.0,85.5$, $76.6,74.9,69.0,67.8,39.2,25.8,25.7,18.1,17.8,-4.6,-4.8,-4.81$, -5.1 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}: 519.2574$; found: 519.2570. Data for 14b: $[\alpha]_{\mathrm{D}}^{25}=-28.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$: $\tilde{v}_{\max }=3480,3022,2955,2931,2859,1790,1472,1363,1258,1162,1090$, $1036,953,839,809,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.28$ (m, 5H), 4.79 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.33$ (dd, $J=9.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 2.65(\mathrm{dd}, J=17.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$, $-0.22 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.1,140.1,128.4$, 128.1, 127.1, 82.4, 76.4, 75.0, 68.6, 65.8, 39.8, 25.7, 25.5, 18.0, 17.8, -4.5, $-4.9,-5.2-5.4 \mathrm{ppm}$; HRMS: m / z : calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}$ 519.2574; found: 519.2568. Data for 14c: $[\alpha]_{\mathrm{D}}^{25}=-3.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{\nu}_{\text {max }}=3436,3019,2930,2957,1788,1650,1464,1260,1100$, 1048, 839, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.29(\mathrm{~m}, 5 \mathrm{H})$, $5.44(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}$, $J=18.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$, $-0.03 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.5,139.4,128.7$, $128.2,125.9,87.6,82.5,77.2,75.9,74.2,36.2,25.5,18.1,-5.1,-5.4 \mathrm{ppm}$; HRMS: m / z : calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}: 519.2574$; found: 519.2565 .

(4R,5S)-4-Hydroxy-5-[(1R,2S,3R)-1,2,3-trihydroxy-3-
 phenylpropyl]dihydrofuran-2(3H)-one (15)

The title compound was prepared from $\mathbf{1 4 b}(45 \mathrm{mg}, 0.0906 \mathrm{mmol})$ by a similar procedure as described for $\mathbf{1}$ to give $\mathbf{1 5}(24.2 \mathrm{mg}$, quant) as
white solid: m.p. $168-170^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+5.4(c=0.5, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr})$: $\tilde{v}_{\max }=3452,3022,2926,2854,1773,1652,1458,1262,1122,1028$, $908 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone $): \delta=7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.48(\mathrm{dd}, J=9.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32$ (br s, 1H, OH), 4.04 (br s, 2H, OH), 3.79-3.72 (m, 2H), 2.88$2.84(\mathrm{~m}$, overlapped by residual water, 1 H$), 2.30 \mathrm{ppm}(\mathrm{d}, J=17.3 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=176.0,142.9,128.9,128.2$, 127.9, 82.7, 75.72, 75.7, 68.6, 68.5, 39.6 ppm ; HRMS: m / z : calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: 291.0845$; found: 291.0852.

Synthesis of $\mathbf{1}$ by Dihydroxylation of $\mathbf{5 a}$

NMO ($30 \mathrm{mg}, \quad 0.256 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.36 \mathrm{mg}$, $0.0064 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were added to a solution of olefin 5 a $(30 \mathrm{mg}$, $0.128 \mathrm{mmol})$ in acetone/water $(4: 1,2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 14 h . The mixture was then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and stirred for 1 h . Water was added and the solution extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on a silica gel column with petroleum ether/EtOAc (1:4) as eluent to give (+)-cardiobutanolide $\mathbf{1}(21 \mathrm{mg}, 61 \%)$ as a white solid: m.p. $190-191^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+7.7(c=0.5$, $\mathrm{MeOH})$. Further elution gave the diastereomer 15 ($5.1 \mathrm{mg}, 15 \%$) as white solid: m.p. $168-170^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+5.6(c=0.3, \mathrm{MeOH})$.

Acknowledgements

This work was financially sponsored by the Industrial Research and Consultancy Centre (IRCC), Indian Institute of Technology Bombay. P.K. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for a research fellowship.
[1] A. Hisham, M. Toubi, W. Shuaily, M. D. A. Bai, Y. Fijimoto, Phytochemistry 2003, 62, 597.
[2] a) F. R. Chang, J. L. Wei, C. M. Teng, Y. C. Wu, J. Nat. Prod. 1998, 61, 1457; b) H. Yang, X. Li, Y. Tang, N. Zhang, J. Chen, B. Cai, J. Pharm. Biomed. Anal. 2009, 49, 140.
[3] a) E. Pérez, J. Sáez, S. Blair, X. Franck, B. Figadère, Lett. Org. Chem. 2004, 1, 102; b) C. A. Carollo, A. R. Hellmann-Carollo, J. M. Siqueira, S. Albuquerque, J. Chil. Chem. Soc. 2006, 51, 837; c) D. B. Silva, M. F. C. Matos, S. T. Nakashita, C. K. Misu, N. C. Yoshida, C. A. Carollo, J. R. Fabri, H. S. Miglio, J. M. Siqueira, Quim. Nova 2007, 30, 1809; d) S. Puvanendran, T. Manoranjan, A. Wickramasinghe, D. N. Karunaratne, V. Kumar, S. Wijesundara, G. Carr, R. Andersen, V. Karunaratne, J. Natl. Sci. Found. Sri Lanka 2010, 38, 75.
[4] I. C. Moreira, J. H. G. Lago, N. F. Roque, Biochem. Syst. Ecol. 2005, 33, 948.
[5] a) M. A. Blázquez, A. Bermejo, M. C. Zafra-Polo, D. Cortes, Phytochem. Anal. 1999, 10, 161; b) H. B. Mereyala, M. Joe, Curr. Med. Chem. Anti-Cancer Agents 2001, 1, 293.
[6] a) P. Ruiz, J. Murga, M. Carda, J. A. Marco, J. Org. Chem. 2005, 70, 713; b) D. Matsuura, K. Takabe, H. Yoda, Tetrahedron Lett. 2006, 47, 1371; c) P. Radha Krishna, P. V. N. Reddy, Tetrahedron Lett. 2006, 47, 4627; d) A. Garg, R. P. Singh, V. K. Singh, Tetrahedron 2006, 62, 11240; e) K. R. Prasad, S. L. Gholap, J. Org. Chem. 2008, 73, 2916; f) P. Radha Krishna, E. S. Kumar, Tetrahedron Lett. 2009, 50, 6676; g) J. S. Yadav, B. Madhavarao, K. S. Rao, Synlett 2009, 3179; h) S. Chandrasekhar, N. Kiranmai, Tetrahedron Lett. 2010, 51, 4058; i) P. Pal, A. K. Shaw, Tetrahedron 2011, 67, 4036.
[7] a) R. W. Hoffmann, Synthesis 2006, 3531; b) I. S. Young, P. S. Baran, Nat. Chem. 2009, 1, 193.
[8] a) R. A. Fernandes, A. K. Chowdhury, J. Org. Chem. 2009, 74, 8826 ; b) R. A. Fernandes, A. B. Ingle, Synlett 2010, 158; c) R. A. Fernandes, S. V. Mulay, J. Org. Chem. 2010, 75, 7029; d) R. A. Fernandes, S. V. Mulay, Synlett 2010, 2667; e) R. A. Fernandes, A. B.

OF ORGANIC CHEMISTRY

Ingle, Tetrahedron Lett. 2011, 52, 458; f) R. A. Fernandes, A. K Chowdhury, Eur. J. Org. Chem. 2011, 1106; g) R. A. Fernandes, P. Kattanguru, Tetrahedron: Asymmetry 2011, 22, 1930.
[9] J. Song, R. I. Hollingsworth, Tetrahedron: Asymmetry 2001, 12, 387.
[10] O. Andrey, J. Sperry, U. S. Larsen, M. A. Brimble, Tetrahedron 2008, 64, 3912.
[11] For selected references on cross-metathesis, see: a) A. K. Chatterjee, T. L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360; b) A. H. Hoveyda, P. J. Lombardi, R. V. O'Brien, A. R. Zhugralin, J. Am. Chem. Soc. 2009, 131, 8378; c) K. Voigtrit ter, S. Ghorai, B. H. Lipshutz, J. Org. Chem. 2011, 76, 4697 and references therein.
[12] a) S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168; b) S. Gessler, S. Randl, S. Blechert, Tet rahedron Lett. 2000, 41, 9973.
[13] The reaction of $\mathbf{3 a}$ with $\mathbf{6 a}$ with the G-II catalyst is known in the literature to give 5a. ${ }^{[6 f]}$ However, the product could not be separated from the catalyst. After repetition of this reaction several times, we only obtained dimerization of $\mathbf{6 a}$.
[14] For reviews, see: a) H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483; b) C. Bolm, J. P. Hildebrand, K. Muniz in Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000, pp. 399; c) A. B. Zaitsev, H. Adolfsson, Synthesis 2006, 1725.
[15] For CBS reduction, see: a) E. J. Corey, E. C. J. Helal, Angew. Chem. 1998, 110, 2092; Angew. Chem. Int. Ed. 1998, 37, 1986; b) J. Garcia, M. López, J. Romeu, Tetrahedron: Asymmetry 1999, 10, 2617.
[16] The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Assignment of the stereocenters was based on conversion of $\mathbf{9 a}$ into the final compound $\mathbf{1}$.
[17] For dihydroxylation with NMO, see: a) V. Vanrheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett. 1976, 17, 1973; b) L. Ahrgren, L. Sutin, Org. Process Res. Dev. 1997, 1, 425; c) J. A. Gladding, J. P. Bacci, S. A. Shaw, A. B. Smith, III, Tetrahedron 2011, 67, 6697.
[18] For matched or mismatched stereoselectivity in double diastereoselection in asymmetric dihydroxylation of chiral olefin substrates, see ref. 14 a.
[19] For a similar highly diastereoselective reduction, see ref. 6 d .
[20] The SAD reaction of $\mathbf{5 b}$ is known in the literature to give nonisolable products. ${ }^{[6]]}$ Reaction details were not available.
[21] M. A. Delton, G. U. Yuen, J. Org. Chem. 1968, 33, 2473.
[22] Z. Wang, Y. T. Cui, Z. B. Xu, J. Qu, J. Org. Chem. 2008, 73, 2270.
[23] A provisional process patent on this work has been filed, application no. 1780/MUM/2012.

Received: October 3, 2012
Revised: October 16, 2012
Published online: November 13, 2012

[^0]: [a] Prof. R. A. Fernandes, P. Kattanguru
 Department of Chemistry
 Indian Institute of Technology Bombay
 Powai, Mumbai 400076, Maharashtra (India)
 Fax: (+91) 22-25767152
 E-mail: rfernand@chem.iitb.ac.in
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ajoc. 201200130.

