# Targeting Parallel Topology of G-Quadruplex Structures by Indole-Fused Quindoline Scaffolds

Satendra Kumar,<sup>†</sup> Sushree Prangya Priyadarshinee Pany,<sup>†</sup> Sruthi Sudhakar, Sushma B. Singh, Chaitra S. Todankar, and P. I. Pradeepkumar\*



**ABSTRACT:** Preferential stabilization of G-quadruplex (G4) structures using small-molecule ligands has emerged as an effective approach to develop anticancer drugs. Herein, we report the synthesis of three indole-fused quindoline derivatives with varying lengths of side chains (**InqEt1**, **InqEt2**, **and InqPr2**) as selective ligands for promoter G4 structures. The ligands stabilize the parallel topology of *c-MYC* and *c-KIT1* promoter G4 DNAs over telomeric and duplex DNAs, as evident from the circular dichroism melting and polymerase stop-assay experiments. The lead ligand, **InqPr2**, downregulates the gene expression of *c-MYC* and *c-KIT* in HeLa and HepG2 cells, respectively, leading to apoptotic cell death. Molecular modeling and dynamics studies support the 2:1 binding stoichiometry revealed from the Job plot analysis and show the ligand's structural features that enable the preferential binding to the parallel G4 structures over other topologies. Our studies show that indole-fused quindoline derivatives can be harnessed as new molecular scaffolds for selective targeting of parallel G4 topologies.

#### **INTRODUCTION**

In addition to forming duplexes by Watson-Crick base pairing, guanines can form square planar structures termed Gtetrads via Hoogsteen hydrogen bonding.<sup>1,2</sup> More than two G-tetrads give rise to stable G4 structures with suitable metal salts.<sup>1</sup> G4 structures have gained immense attention because of their implications in various biological processes. Potential G4-developing sequences are found at the promoter regions of multiple proto-oncogenes and the end part of chromosomes.<sup>2</sup> Several significant biological functions, such as maintaining telomere length and modulation of oncogenic expression, are influenced by the formation of stable G4 structures.<sup>23</sup> In most cancer cells, overexpression of *c-MYC* is observed and is therefore considered as a significant therapeutic target.<sup>4</sup> Transcription of c-MYC gene is known to be controlled by nuclease hypersensitivity element (NHE III<sub>1</sub>), which harbors G-rich sequences.<sup>5</sup> Expression of the *c*-*MYC* oncogene can be halted by stabilizing the G4 structure using small-molecule ligands.<sup>6</sup> A myriad of small molecules such as porphyrin, quindoline, carbazole, and so forth have been reported to inhibit c-MYC expression.<sup>6</sup> Identification of small molecules that regulate gene expression by targeting specific G4 topology is highly desirable.<sup>2</sup> Although targeting a particular G4 topology is quite challenging, varying dimensions of different G-quartets and the unique sizes of their loops can render specificity toward a specific topology. Though several ligands that stabilize G4 structures have been reported over the years,<sup>2</sup> only a few show preferential binding to promoter G4 structures.<sup>3,6–8</sup> Therefore, designing new molecular scaffolds, selectively binding to the promoter G4s with parallel topology, provides promising avenues for anticancer drug discovery.

Herein, we have synthesized G4-binding small molecule ligands based on a quindoline scaffold substituted with indole

Received:June 22, 2022Revised:October 13, 2022Published:October 31, 2022







Figure 1. Structure of indole-fused quindoline derivatives used as G4-stabilizing ligands.

moieties (Figure 1). Various biophysical techniques were used to evaluate their binding affinities toward the G4 structures, and their cellular activities were also explored. The results obtained from these studies revealed that these ligands could preferentially bind to the parallel G4 DNAs of *c-MYC* and *c-KIT1* promoters and inhibit gene expression at the cellular level.

#### EXPERIMENTAL SECTION

**Synthetic Procedure.** Details of the synthetic methods and compound characterization data are described in the Supporting Information.

Single Crystal X-ray Diffraction Methodology. The crystal data of compound 4 and the alkylated product InqPr1 were obtained on a Rigaku Saturn 724+ CCD diffractometer at 293 K (Radiation source: Mo  $K_{\alpha}$ ;  $\lambda = 0.7107$  Å). The data were reduced with the help of CrysalisPro Red 171.41\_64.93a software, and the structure was solved using Olex29 with the ShelXT10 structure solution program and further refined with the SHELXL<sup>11</sup> refinement package using the least-squares minimization. The full-matrix least-squares technique with anisotropic thermal data for nonhydrogen atoms on  $F^2$  was utilized for the final refinement of the structure. Refinement of the nonhydrogen atoms was carried out anisotropically, and the hydrogen atoms were refined at calculated positions as riding atoms with isotropic displacement parameters. Deposition numbers (CCDC: 2009565 [compound 4] and 2113444 [InqPr1]) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

**Ligand Stock Solution.** The 5 mM stock solution of the ligand was prepared using the appropriate amount of DMSO and diluted to 2.5 mM by using 1 mM HCl in  $H_2O$ .

**Oligonucleotides.** The oligonucleotides listed in Table S5 were used for all the biophysical experiments. All the oligonucleotides are synthesized in house using a MerMade 4 synthesizer. The oligonucleotides were purified with 20% PAGE with 7 M urea and 10x TBE, utilizing the standard protocols. The desalting of these purified oligonucleotides was performed using the SePak column, and the concentration was estimated with the UV–Vis spectrophotometer at 260 nm wavelength using appropriate molar extinction coefficients ( $\varepsilon$ ).

**CD Titration Studies.** The circular dichroism (CD) titration studies were recorded in a Jasco J-1500 CD spectrometer between 200 and 600 nm wavelength ranges

using a quartz cuvette of 1 mm path length. The scanning speed was at 100 nm/s with a response time of 8 s at 25 °C. The concentration of oligonucleotide used for the study was 10  $\mu$ M in 10 mM lithium cacodylate, pH 7.2 in the presence of salt (10 mM KCl and 90 mM LiCl for Telomeric and *c*-*KIT1* DNAs, 1 mM KCl and 99 mM LiCl for *c*-*MYC* DNA, and 50 mM KCl and 50 mM LiCl for *h*-*RAS1* G4 DNA). On the sequential addition of the ligand to the DNA solution, the solution was equilibrated for 3 min each time. Each spectrum was taken as an average of three measurements. All spectra are baseline-corrected and further analyzed using Origin 8.0 software.

CD Melting Studies. Melting experiments were performed using 10–15  $\mu$ M DNA in 10 mM lithium cacodylate buffer, pH 7.2, along with the specific amount of LiCl and KCl, and 5 molar equivalents of ligands were used. c-KIT1, telomeric DNA, and duplex DNA solutions were prepared in 10 mM KCl and 90 mM LiCl, c-MYC DNA in 1 mM KCl and 99 mM LiCl, and h-RAS1 in 50 mM KCl and 50 mM LiCl. After annealing these DNA solutions by heating at 95 °C for 5 min and cooling at room temperature over 3–4 h, 5 molar equivalent of ligand was added and kept at 4 °C overnight. Thermal melting was monitored at 263 nm for c-MYC and c-KIT1, at 295 nm for telomeric, 290 nm for h-RAS1, and 242 nm for duplex DNA using a 1 mm path length quartz cuvette at a heating rate of 1 °C min<sup>-1</sup>. The results are the mean values of three replicates. To obtain the  $T_{1/2}$ , the sigmoidal curve was fitted with the Boltzmann function in Origin 8.0 software.

**Fluorimetric Titration.** The fluorimetric titration experiment was carried out by a HORIBA fluorimeter (Fluoromax 4) using a 100  $\mu$ L micro quartz cuvette with a 1 cm path length. The ligand (100  $\mu$ M) was excited at 412 nm, and the emission spectra were recorded at the 420–700 nm range, having a slit width of 3 nm. The fluorescence of ligand was recorded, and to it annealed DNA samples (0–9  $\mu$ M DNA, 100 mM KCl, and 10 mM lithium cacodylate buffer, pH 7.2) were added, and the emission spectra were recorded after equilibration of 3 min for each addition. The normalized fluorescence intensity was plotted against the logarithm of the concentration of the DNA. The binding constant values were calculated by fitting the curve using Hill 1 eq 1

$$F_{\rm N} = F_0 + (F_{\rm S} - F_0) \left( \frac{[{\rm DNA}]^n}{[K_{\rm d}]^n + [{\rm DNA}]^n} \right)$$
(1)

Normalized fluorescence intensity  $(F_N)$  was derived using the equation

$$F_{\rm N} = \frac{(F_{\rm i} - F_{\rm S})}{(F_{\rm O} - F_{\rm S})}$$

where  $F_i$  = fluorescence intensity of the bound ligand at each titration point,  $F_0$  = fluorescence intensity in the absence of a ligand,  $F_s$  = fluorescence intensity at the saturation concentration of a ligand, n = Hill coefficient, and  $K_d$ (dissociation constant) =  $(1/K_a)$ . All the spectra were analyzed by using Origin 8.0 software.

**Job Plot Analysis.** With an excitation wavelength of 412 nm and emission spectra in the 420–700 nm range, Job plot analyses for **InqPr2** with *c-MYC* and *c-KIT1* were carried out. The total ligand with DNA concentration of each sample was kept constant at 15  $\mu$ M. The mole fractions of **InqPr2** in the samples varied from 0–1. Emission spectra of the samples were recorded in a Horiba fluorimeter (Fluoromax-4) by using a 100  $\mu$ L micro quartz cuvette with a 1 cm path length and a 3 nm slit width. The stoichiometry for ligand–DNA complexes was calculated by plotting mole fractions of **InqPr2** against fluorescence intensities. Origin 8.0 was used to analyze all of the curves.

Taq DNA Polymerase Stop Assay. The polymerase assay was executed using a formerly reported protocol with slight modifications. A suitable concentration of FAM-labeled primer (0.2  $\mu$ M) and template DNA (0.1  $\mu$ M) in annealing buffer (5 mM Tris (pH 8.0), 10 mM NaCl, and 0.1 mM EDTA) was annealed by heating at 95 °C for 5 min followed by slow cooling to room temperature. The annealed primertemplate solution and 1× polymerase buffer (50 mM Tris-HCl (pH 8.0), 0.5 mM DTT, 0.1 mM EDTA, 5 mM MgCl<sub>2</sub>, and 5 mM KCl for c-MYC and 10 mM KCl for telomeric DNA template; 1  $\mu g \mu L^{-1}$  BSA in 5% glycerol; and 0.2 mM dNTPs) were mixed together further. An appropriate concentration of the ligand  $(0-100 \ \mu M)$  was added to the reaction mixture (10  $\mu$ L) and incubated for over 30 min at room temperature. To achieve a primer extension reaction, 1 U of the Tag DNA polymerase enzyme was added to the reaction mixtures and heated at 40 °C for the telomeric and 55 °C for c-MYC for 30 min. Finally, 10  $\mu$ L of the fast dye (80% formamide, 1× TBE, 50 mM EDTA (pH 8.0), and 0.025% bromophenol blue) was added to the reactions to stop the primer extension reaction. The extension products were then determined by 15% denaturing PAGE containing 7 M urea in 1× TBE (89 mM of Tris-HCl and boric acid each and 2 mM EDTA, pH 8.2) running buffer. The gel was scanned on an Amersham Typhon 600 (GE Healthcare) and quantified with the help of the Image Quant 5.2 software.  $IC_{50}$  values were determined with the help of Origin 8.0 software by plotting the percentage of the stop product against ligand concentrations.

**Cell Culture.** HeLa (human cervical cancer) cells and liver hepatocellular cancer cell lines (HepG2) were maintained in Eagle's minimum essential media (MEM), and Lenti- X were grown in Dulbecco's modified Eagle medium and supplemented with 10% fetal bovine serum with 1% of the antibiotic antimycotic solution. Cells were cultured in a humidified atmosphere (Memmert, ICO) containing 5% of CO<sub>2</sub> at 37 °C.

**Cytotoxicity Studies.** HeLa and HepG2 cells were seeded at a density of  $6 \times 10^3$  cells per well in 96-well plates. After 24 h of seeding, the cells reached a confluency of about 60–70%. For Lenti-X cells,  $10^4$  cells per well in 96-well plates were seeded. After 24 h, the confluency was allowed to

reach 70%. Then the media was removed, and the cells were washed with 100  $\mu$ L of 1x PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, and 1.8 mM KH<sub>2</sub>PO<sub>4</sub>, pH 7.4) and treated with various concentrations of InqPr2 (0.5, 1 2, 3, 4, 5, and 10  $\mu$ M). For Lenti-X, various concentration of InqPr2 ranging from 2–20  $\mu$ M was used. After 24 h of incubation with the ligand, the plate containing treated/untreated cells was kept under a laminar flow hood for 30 min at room temperature for equilibration. To this, 100  $\mu$ L of CellTiter Glo (Promega) reagent was added, and the plate was placed for 2 min in an orbital shaker. Subsequently, the cells were incubated 10 min for equilibration, and then, the luminescence values were acquired on a luminometer (Promega E5311, glowmax 20/20). The luminescence of a cell is directly related to the amount of ATP and thereby the number of viable cells present in the culture. The percentage cell viability was plotted against the logarithmic concentration of ligand, and the IC50 value was calculated by fitting the curve using the dose response equation in Graph pad Prism 8.3.0 using a previously reported procedure.<sup>8</sup>

RNA Isolation and Purification. HeLa cells were seeded at a density of  $2 \times 10^5$  cells per well in 6-well plates and allowed to adhere for 24 h at 5%  $CO_2$  and a 37  $^\circ C$ atmosphere. The dead cells from the wells were discarded along with the media, and the adhered cells were washed with 1x PBS, pH 7.4 (1 mL). The cells were exposed to the ligand InqPr2 (2  $\mu$ M) and incubated for 24 h under 5% CO<sub>2</sub>. The next day, the media was discarded, and the cells were washed with PBS buffer (1 ml) followed by trypsinization. 100  $\mu$ L of trypsin was added to the adhered cell and kept inside the 5%  $CO_2$  incubator for 2–3 min. The trypsin activity was quenched by 1 mL of the media, and the media containing suspended cells was transferred to a 1.5 mL centrifuge tube and centrifuged at 2500 rpm for 5 min. The supernatant was discarded, and the cell pellets were taken for the RNA isolation. RNA was isolated using the GeneJET RNA purification kit (Thermo Scientific) according to the manufacturer's protocol. The cell pellets were collected and resuspended in the lysis buffer containing 2 M DTT solution (600  $\mu$ L). The lysis buffer containing cells was vortexed and homogenized using a 20-gauge needle. The ethanol (600  $\mu$ L) was added to it, and the solution was transferred to a RNA GeneJET column and centrifuged at 12 000 rpm for 1 min. The wash buffer I (700  $\mu$ L) was added to the column and centrifuged at 12000 rpm for 1 min, followed by the addition of wash buffer II (600  $\mu$ L). Finally, the RNA was eluted from the column using 100  $\mu$ L of nucleus-free water. The isolated RNA was quantified by a nanophotometer (IMPLEN) and used as a template in c-DNA synthesis.

**cDNA Synthesis.** The cDNA synthesis was performed in a 20  $\mu$ L reaction using the verso cDNA synthesis kit (Thermo Scientific, catalogue number AB1453A) employing the manufacturer's protocol. 500 ng RNA template, 1X cDNA synthesis buffer (4  $\mu$ L), 500  $\mu$ M dNTP mix (2  $\mu$ L), 500 ng RNA primer (1  $\mu$ L), RT enhancer (1  $\mu$ L), verso enzyme mix (1  $\mu$ L), and nucleus-free water (10  $\mu$ L) were added, and the mixture was heated at 42 °C for 30 min for cDNA synthesis. Then, the mixture was heated at 92 °C for 2 min for the inactivation of the enzyme.

**qRT-PCR Studies.** The real-time quantitative polymerase chain reaction (qRT-PCR) was performed on an AriaMx Real-Time PCR system (Agilent Technologies) by using the Brilliant III Ultra-Fast SYBR green QPCR master mix

(Agilent Technologies, Catalogue Number 600882) and the cDNA library as the template. The forward and reverse primers used in the experiment are mentioned in Table S6. The amount of cDNA was optimized by dilution to get a significant threshold value for the housekeeping and the target gene within the range (40 cycles). The polymerase chain reaction (PCR) sample (10  $\mu$ L) contains the 2X SYBR green master mix (5  $\mu$ L), cDNA, (1  $\mu$ L), 0.4  $\mu$ M of each primer (20  $\mu$ L), and nuclease-free water (3.2  $\mu$ L). The PCR was executed in 96-well plates and amplified by using the quantitative PCR method. The thermal cycle was programed as follows: denaturation at 95 °C for 3 min, followed by 40 cycles with denaturation at 95  $^\circ \mathrm{C}$  for 30 s, annealing at 57 °C for 30 s, and elongation at 72 °C for 30 s.<sup>12</sup> The relative expression of the gene of interest and the housekeeping gene,  $\beta$  actin, was determined by the arithmetic calibrator  $2^{(-\Delta\Delta Ct)}$ method.<sup>13</sup> First, the threshold values for both housekeeping and target genes were obtained from the experiment. Each experiment was run in triplicate. Error bars represent the standard deviations derived from three independent experiments.

Statistical analysis was used to determine the expression of the gene of interest in treated and untreated cells. The p-value was calculated by the t-test using GraphPad Prism 6. For the analysis, p-values of less than 0.05 were considered significant.

Apoptosis Assay by Flow Cytometry Using Propidium lodide/Annexin V-FITC. An apoptosis assay was performed using propidium iodide (PI)/Annexin V-FITC dyes by flowcytometry. HeLa cells of  $2.0 \times 10^5$  density were seeded into the cell culture plate in C-MEM and allowed to adhere and grow at 37 °C in 5% CO2 incubator for 24 h. After 70-80% confluency, the cells were treated with ligand InqPr2 (2.0 and 4.0  $\mu$ M) and again incubated in a 5% CO<sub>2</sub> incubator for 24 h. After incubation for 24 h, the cells were trypsinized, centrifuged at 2500 rpm for 10 min, and resuspended at  $10^6$  cells/mL in the 1× Annexin V binding buffer (100  $\mu$ L). Cell suspensions (100  $\mu$ L) were added with Annexin V-FITC (1  $\mu$ L) and incubated for 15 min at room temperature in the dark. The cell suspension was further diluted with 400  $\mu$ L of the Annexin V binding buffer, followed by the addition of 100  $\mu$ g/mL of propidium iodide  $(1 \ \mu L)$  prior to flowcytometry (Becton Dickinson, Aria SORP). Statistical analysis to quantify the percentage of cells was performed by GraphPad Prism 6, and the p-value was calculated using the two-way Anova method. For the analysis, p-values of less than 0.05 were considered significant.

Molecular Dynamics Studies. The structure of the ligand InqPr2 was prepared in GaussView 6.0 and optimized in the Gaussian 16 B.01 software at the  $HF/6-31+\bar{G^{**}}$  level of theory. The optimized structure of the ligand was used for further docking studies with c-MYC (PDB ID: 1XAV), c-KIT1 (PDB ID: 2O3M), antiparallel telomeric (PDB ID: 143D), and telomeric Hybrid 2 G4 DNA (PDB ID: 2JPZ). The docking studies were done in the Autodock 4.2.6 software. To facilitate docking, the 5'-end dA was removed from c-KIT1. A grid size to enclose the whole macromolecule was used. A genetic algorithm was used to generate 500 independent conformations of the ligand with each of the G4 DNA. The docked conformers were then explored according to their binding energy and binding modes, and the best conformers were used for MD simulations using AMBER 18. The simulation procedure was adapted from a

previously reported protocol by Neidle and Haider.<sup>14</sup> The electrostatic potential (ESP) charges for the selected docked conformers were calculated at the HF/6-31G\* level of theory in Gaussian 16 B.01, and restrained electrostatic potential (RESP) fitting of these were completed using the antechamber<sup>15</sup> module of AMBER 18. The Generalized AMBER force field (GAFF)<sup>16</sup> and the OL15<sup>17</sup> force field were used for the ligand and G4, respectively. The systems were neutralized by adding K<sup>+</sup> as counter ions, and the TIP3P water model was used for solvation up to a 10 Å rectangular box. All the systems were prepared in tleap of AMBER 18. The systems were then subjected to 10 000 steps of minimization by the steepest descent method with a restraint of 2.0 kcal/mol.Å<sup>2</sup> on the ligand and G4. This was followed by 100 ps of heating and 100 ps of density equilibration with restraints of 50 and 2.0 kcal/mol·Å<sup>2</sup>, respectively on the InqPr2-G4 complex. The system was further equilibrated for 800 ps in the NPT ensemble. Then, an unrestrained MD simulation was performed on the system using the NPT ensemble for 500 ns in GPU accelerated version of PMEMD in AMBER 18. SHAKE algorithm was applied to subject the hydrogen atoms to bond length constraints. The temperature was maintained at 300 K using the Langevin<sup>18</sup> thermostat with a collision frequency of 2 ps<sup>-1</sup>. The pressure was maintained at 1 bar using Berendsen<sup>19</sup> barostat with a relaxation time of 2 ps. All the nonbonded interactions were calculated using the Particle Mesh Ewald (PME) method with a cut-off of 10 Å. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), distances, clustering and other calculations were done using the CPPTRAJ<sup>20</sup> module of AMBER 18. The cut off used to calculate electrostatic distances was 5.0 Å. Binding energy was calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) module of AMBER 18 for the last 20 ns of the simulations. Images were rendered using PyMOL (www.pymol.org), and UCSF chimera<sup>21</sup> was used to visualize the trajectories.

#### RESULTS AND DISCUSSION

Ligand Design and Synthesis. Quindoline, an alkaloid having an indolo[3,2-b]quinoline tetracyclic ring system, is isolated from Cryptolepis Sanguinolenta.<sup>22</sup> This core exhibits a wide range of antiangiogenic, antiviral, and antitumor activity.<sup>23,24</sup> A derivative of quindoline has already been reported to downregulate the c-MYC oncogene expression.<sup>25,26</sup> So far, most of the quindoline derivatives reported are shown to interact with a variety of G4 topologies.<sup>27-30</sup> Considering all these factors, we designed the ligands with the tetracyclic quindoline core substituted with another indole moiety with side chains of varying lengths (Figure 1). We hypothesize that the ligands can potentially stack over the planar G-quartet surface, utilizing the aromatic core, and additionally, the indole moiety attached to the fused ring can impart selectivity toward folded G4 structures over duplex DNA. The presence of indole and the ethyl and propyl side chains can offer preference for the parallel G4 topology due to steric and conformational restraints. Moreover, the positively charged terminal pyrrolidine group can mediate electrostatic interactions involving the negatively charged phosphate groups of the loop and groove regions, and steric hindrance due to the pyrrolidine group can potentially finetune noncovalent interactions.<sup>31</sup>

#### Scheme 1<sup>a</sup>



<sup>*a*</sup>(i) I<sub>2</sub> and acetonitrile (ACN), rt, 20 min; (ii) SnCl<sub>2</sub>·2H<sub>2</sub>O and MeOH, 64 °C, 5 h; (iii) 1-(2-chloroethyl)pyrrolidine Hydrogen Chloride, Cs<sub>2</sub>CO<sub>3</sub>, and ACN, 80 °C, 48 h; (iv) 1,3-Dibromopropane, Cs<sub>2</sub>CO<sub>3</sub>, and ACN, 80 °C, 24 h; and (v) Pyrrolidine and ACN, 80 °C, 12 h.



Figure 2. Normalized CD melting curves of *c*-MYC and *c*-KIT1 G4 DNAs (10  $\mu$ M in 10 mM lithium cacodylate buffer, pH 7.2) in the absence and presence of 5 molar equivalents of ligands. (A) *c*-MYC DNA (1 mM KCl and 99 mM LiCl); (B) *c*-KIT1 DNA (10 mM KCl and 90 mM LiCl).

The synthetic procedure used to access G4 ligands in this work is shown in Scheme 1. The synthesis of all the derivatives was achieved from the starting materials indole 1 and 2-nitrobenzaldehyde 2. Bisindole derivative 3 was prepared in 51% yield by reacting 1 with 2 in the presence of iodine.<sup>32</sup> The fused indolo[3,2-*b*]quinoline core 4 was prepared using a previously established procedure.<sup>32</sup> The indole-fused quindoline compound 4 was obtained in 64% yield by treating compound 3 with SnCl<sub>2</sub>·2H<sub>2</sub>O. The detailed mechanism for the formation of 4 is shown in Scheme S1 of Supporting Information.

Compound 4 was alkylated with 1-(2-chloroethyl)pyrrolidine hydrogen chloride under a basic medium using  $Cs_2CO_3$  to furnish mono- and di-alkylated ligands InqEt1 and InqEt2 in 30% and 21% yield, respectively. Additionally, compound 4 was treated with 1,3-dibromopropane to synthesize the dialkylated product 5 exclusively in 60% yield. Bromide in compound 5 was further replaced by pyrrolidine to produce InqPr1 in 86% yield. All the ligands were protonated by using 2% of 0.5 mM HCl/H<sub>2</sub>O and utilized for further biophysical experiments.

Single crystal X-ray crystallographic technique was employed to acquire the crystal structure of compound 4, and the ORTEP diagram is shown in Scheme 1. Crystallographic data, bond lengths, and angles of compound 4 are given in Tables S1 and S2, Supporting Information. The crystal structure revealed that both N1 and N2 nitrogen atoms (marked in 4 in Scheme 1) are positioned opposite, contrary to the structure reported in the literature in which the two fused ring nitrogen atoms face the same side.<sup>32</sup> In order to confirm the alkylation site in compound 4, the crystal structure of the alkylated product was also obtained (**InqPr1**, Scheme S2, Supporting Information). The crystal structure clearly shows that the alkylation happens at the atoms N2 and N3 of compound 4 (Scheme S2, Tables S3 and S4, Supporting Information).

Article

| Гable 1. Thermal Stabilization of Variou | Quadruplex and | Duplex DNAs Determi | ined from CI | D Melting | Experiments |
|------------------------------------------|----------------|---------------------|--------------|-----------|-------------|
|------------------------------------------|----------------|---------------------|--------------|-----------|-------------|

|         |                             |               | <sup>a</sup> $\Delta$ T <sub>1/2</sub> |                |                |
|---------|-----------------------------|---------------|----------------------------------------|----------------|----------------|
| ligands | telomeric (K <sup>+</sup> ) | c-MYC         | c-KIT1                                 | h-RAS1         | duplex (ds-17) |
| InqEt1  | $-1.1 \pm 0.2$              | $0.7 \pm 0$   | $9 \pm 0.1$                            | $0.5 \pm 0.2$  | $0 \pm 0.1$    |
| InqEt2  | $-0.2 \pm 0.1$              | $3.6 \pm 0.1$ | $10.7 \pm 0.2$                         | $3.4 \pm 0.2$  | $0.2 \pm 0$    |
| InqPr2  | $1 \pm 0.2$                 | $9.8 \pm 0.1$ | $14.2 \pm 0.1$                         | $-1.7 \pm 0.1$ | $-0.6 \pm 0.1$ |

<sup>*a*</sup> $\Delta$   $T_{1/2}$  represents the difference in the thermal melting temperature [ $\Delta T_{1/2} = T_{1/2}$  (DNA + 5 molar equivalent ligand)— $T_{1/2}$  (DNA)]. The reported values are the average of three independent experiments with estimated standard deviations. All the experiments were performed using 10  $\mu$ M quadruplex DNA or 15  $\mu$ M duplex DNA in 10 mM lithium cacodylate buffer, pH 7.2. The  $T_{1/2}$  values in the absence of ligands are 53.2  $\pm$  0.2 for the telomeric DNA in the K<sup>+</sup> ion (10 mM KCl and 90 mM LiCl), 57.8  $\pm$  0.4 for *c*-MYC DNA (1 mM KCl and 99 mM LiCl), 46.6  $\pm$  0.6 for *c*-KIT1 DNA (10 mM KCl and 90 mM LiCl), 53.8  $\pm$  0.4 for *h*-RAS1 DNA (50 mM KCl and 50 mM LiCl), and 64.0  $\pm$  0.2 for duplex DNA (10 mM KCl and 90 mM LiCl).



Figure 3. CD titration spectra of quadruplex DNAs (10  $\mu$ M in 10 mM lithium cacodylate buffer, pH 7.2) in the presence of salt with InqPr2 (0–5 equivalents). (A) Telomeric DNA (10 mM KCl and 90 mM LiCl); (B) *c-MYC* DNA (1 mM KCl and 99 mM LiCl).

CD Melting Studies. Melting experiment from CD was used to investigate ligand-induced thermal stability of G4 structures.<sup>33</sup> G4-forming and duplex DNA sequences used in the biophysical experiments are listed in Table S5, Supporting Information. We performed CD melting with 10  $\mu$ M G4 DNAs in the presence and the absence of ligands by monitoring the CD signal intensity at the appropriate wavelengths, suitable salt, and buffer concentrations. Melting experiments with c-MYC G4 DNA were performed by monitoring the signal at 263 nm, which yielded a thermal melting temperature  $(T_{1/2})$  of ~58 °C.<sup>34</sup> After addition of 5 molar equivalents of ligand InqPr2 to c-MYC G4 DNA, the  $T_{1/2}$  value was increased by ~10 °C (Figure 2A and Table 1). In contrast, ligands InqEt1 and InqEt2 could not enhance the  $T_{1/2}$  to a notable extend (maximum  $\Delta T_{1/2} \sim 3.6$ °C) at similar conditions. Similarly, the thermal stabilization of another parallel promoter, c-KIT1 G4 DNA, was measured by monitoring the ellipticity changes at the same wavelength. In the absence of any ligand, c-KIT1 G4 DNA in 10 mM KCl, showed  $T_{1/2}$  of ~46 °C. A high degree of stabilization was observed with 5 molar equivalents of ligand InqPr2 by increasing in the  $T_{1/2}$  value by up to ~14 °C (Figure 2B and Table 1). The other two ligands exhibited a moderate increase in the melting temperatures ( $\Delta T_{1/2} \sim 9$  °C for InqEt1 and ~11 °C for InqEt2) of c-KIT1 G4 DNA (Figure 2B and Table 1). These results suggest that all three ligands stabilize the c-MYC and c-KIT1 G4 DNAs.

To assess the stabilization property of these ligands with a particular G4 topology, we probed the effect of the ligand on the hybrid topology of telomeric G4 and the antiparallel topology of *h*-*RAS1* G4 DNAs. We performed melting studies

with human telomeric and *h-RAS1* promoter G4 DNAs in the presence of K<sup>+</sup>, which stabilize multiple G4 conformations in the former and antiparallel topology in the latter.<sup>35,36</sup> The melting experiments were performed with h-RAS1 DNA by monitoring the wavelength at 290 nm to yield  $T_{1/2}$  value of ~53 °C (Figure S1, Supporting Information and Table 1).<sup>35</sup> Similarly, the  $T_{1/2}$  value for telomeric DNA was found to be ~54 °C (Figure S1, Supporting Information and Table 1).<sup>34</sup> Addition of any of the three ligands showed only a marginal change in the melting temperature (maximum  $\Delta T_{1/2} \sim 1$  °C for telomeric DNA and maximum  $\Delta T_{1/2} \sim 3.4$  °C for *h*-RAS1 DNA) for both the G4 DNAs (Figure S1, Supporting Information and Table 1). After this, we measured CD melting with the duplex DNA by monitoring the CD ellipticity at 242 nm to explore the ligand selectivity toward quadruplex DNAs.<sup>34,37</sup> With 5 molar equivalents of ligands, we did not observe any stabilizing effect of these ligands on the duplex DNA (Figure S1, Supporting Information and Table 1).

Overall, CD melting experiments revealed that these ligands stabilize the *c-MYC* and *c-KIT1* parallel promoter over the antiparallel *h-RAS1*, hybrid telomeric G4 and duplex DNAs. Among the ligands studied, **InqPr2** was found to be the most promising one, and it was used for further evaluation.

**CD Titration Studies.** The CD spectrum of telomeric DNA in the presence of added metal ions consisted a small peak at 235 nm and a major peak at 290 nm along with a shoulder peak at 255 nm, which are the characteristic peaks of a (3 + 1) hybrid G4 structure<sup>36</sup> (Figure 3A). The addition of ligand **InqPr2** (0–5 equivalents) did not cause a



**Figure 4.** Emission spectra of **InqPr2** with (A) *c*-MYC G4 DNA (0–6  $\mu$ M); (B) Plot of normalized fluorescence intensity of the ligand against the logarithm of an increasing concentration of *c*-MYC G4 DNA fitted into the Hill 1 equation. The titration was carried out in 100 mM KCl and 10 mM lithium cacodylate buffer at pH 7.2. ( $\lambda_{ex}$ —412 nm,  $\lambda_{em}$ —465 nm).



Figure 5. Job plot analysis of InqPr2 with (A) *c-MYC* and (B) *c-KIT1* at an excitation wavelength of 412 nm and an emission wavelength of 465 nm. The overall molar concentration (ligand + DNA) was kept constant at 15  $\mu$ M.

significant change in the peak ellipticity, which suggests that the prefolded topology of telomeric DNA remained the same (Figure 3A). *h-RAS1* DNA in the presence of added metal ions displayed a negative peak at 260 nm and a major positive peak at 290 nm, which are the characteristic peaks of an antiparallel G4 structure (Figure S2A Supporting Information).<sup>35</sup> Similarly, the CD ellipticities are almost unaffected in the presence of the InqPr2 ligand, resulting in no changes in the topology of h-RAS1 DNA. c-MYC and c-KIT1 DNAs exhibited a major positive peak at 263 nm and a negative peak at 240 nm in the presence of added metal ions, which corresponds to parallel topology (Figure S2B Supporting Information and Figure 3B).<sup>38</sup>c-MYC and c-KIT1 DNAs showed no major change in their ellipticities upon interacting with the ligand. Also, the addition of the ligand did not show any change in the position of the characteristic peak, indicating the parallel topology of the DNA is retained.

**Fluorimetric Titration Experiments.** Fluorimetric titration experiments were carried out to find the binding affinities of **InqPr2** with G4 and duplex DNAs. The ligand exhibited an emission peak at 465 nm upon excitation at 412 nm. The ligand fluorescence intensity gradually decreases upon the incremental addition of G4 and duplex DNAs. A blue shift of ~10 nm was observed on increasing the concentration of *c-MYC*, *c-KIT1*, and *h-RAS1* G4 DNAs (Figures 4A and S3, Supporting Information). The hypochromic and blue shift of ligand fluorescence suggests an effective interaction of **InqPr2** with the promoter G4 DNAs. The plot of normalized fluorescence intensity against the logarithm of the G4 concentration was fitted using the Hill 1 equation and the binding constants for c-MYC, c-KIT1, and *h*-RAS1 G4 DNA were found to be  $K_a = 0.90 \pm 0.03 \times$  $10^6$  M  $^{-1}$ , 1.28  $\pm$  0.04  $\times$   $10^6$  M  $^{-1}$ , and 0.35  $\pm$  0.07  $\times$   $10^6$ M<sup>-1</sup>, respectively (Figures 4B and S3 Supporting Information). The binding constant values obtained for the parallel promoter G4 DNAs are in the range of favorable ligand-G4 binding interactions reported in the literature.<sup>4,39</sup> In contrast, negligible changes in the fluorescence intensity were observed with telomeric and duplex DNAs, which prevented us from calculating the binding constants. These results indicate the weak interaction of the ligand with telomeric and duplex DNAs (Figure S3, Supporting Information). Overall, fluorimetric titration studies likely indicate the favorable binding of IngPr2 to c-MYC and c-KIT1 G4s over other topologies.

Further, fluorescence property of **InqPr2** was used to probe the binding stoichiometry of the ligand and the DNAs, using Job plot analysis. The plot of fluorescence intensity versus the mole fraction (Figure 5) indicated a binding stoichiometry of 2:1 for the ligand-DNA interaction.

**Taq DNA Polymerase Stop Assay.** The preferential stabilizing effect of the lead ligand **InqPr2** toward parallel G4 DNA was further verified with the *Taq* DNA polymerase stop assay.<sup>40</sup> In the absence of added **InqPr2**, stop products were not observed in any reaction mixture containing telomeric, *c*-*MYC*, and muted *c*-*MYC* DNAs (Figures 6A and S4, Supporting Information) due to unstable G4 structures.



Figure 6. (A) 15% denaturing PAGE (7 M urea) of *Taq* DNA polymerase stop assay of the *c-MYC* DNA with an increasing concentration of InqPr2 (0–80  $\mu$ M) and Telomeric DNA with InqPr2 (0–180  $\mu$ M); (B) plot of the percentage of the stop product against the increasing concentration of InqPr2. Conditions: 0.2  $\mu$ M primer, 0.1  $\mu$ M template DNA, 0.2 mM dNTPs, and 1U *Taq* DNA polymerase enzyme in buffer (50 mM Tris–HCl, pH 7.2, 0.5 mM DTT, 0.1 mM EDTA, 5 mM MgCl<sub>2</sub>, and 5 mM KCl). F, S, and P denote full length, stop product, and primer, respectively.



**Figure 7.** Apoptosis induction of HeLa cells (A) untreated, (B) on treatment with 2.0  $\mu$ M, and (C) on treatment with 4.0  $\mu$ M **InqPr2** for 24 h. (D) Cell percentages in early apoptosis, late apoptosis, and necrosis are shown in the bar graph as mean value  $\pm$  SD. Apoptotic cells were stained with Annexin V/PI and analyzed by flow cytometry. The data are representative of three independent experiments. Asterisk \*\*\* and \*\*\*\* represent p < 0.001 and 0.0001, respectively. The results were considered significant as compared to untreated HeLa cells.

From the CD melting experiment, it is already proven that the **InqPr2** ligand can stabilize parallel G4 DNA; therefore, in the presence of the **InqPr2** ligand, stop products were detected with *c*-MYC DNA only. The plot of the percentage stop product against ligand concentration yielded ~ 6.8  $\mu$ M IC<sub>50</sub> value (Figure 6B). Stop products were not observed even after adding up to 180  $\mu$ M ligand concentration with telomeric or muted *c*-MYC DNA since **InqPr2** failed to stabilize other topologies of the G4 structure (Figure 6A and S4, Supporting Information). Therefore, apart from CD melting studies, polymerase stop assays suggested the stabilizing effects of the InqPr2 ligand toward parallel G4 DNA.

**Cytotoxicity and Apoptosis Studies.** To investigate the antiproliferative activities of the most promising **InqPr2** ligand, we performed the luminometric cell viability assay using human cervical cancer (HeLa) and liver hepatocellular cancer (HepG2) cell lines.<sup>41</sup> After 24 h of treatment, **InqPr2** inhibited the cell proliferation in HeLa cell lines with an IC<sub>50</sub> value of  $2.2 \pm 0.3 \,\mu$ M (Figure S5A, Supporting Information). Similarly, the ligand was able to impede the growth of the HepG2 cell having an IC<sub>50</sub> value  $2.6 \pm 0.5 \,\mu$ M. We also



**Figure 8.** Effects of **InqPr2** (2  $\mu$ M) on the expression of (A) *c*-MYC in HeLa and (B) *c*-KIT gene in HepG2 cell lines from qRT-PCR after 24 h of treatment. The fold change is calculated using the 2<sup>(- $\Delta\Delta$ Ct)</sup> method. Error bars represent the standard deviations derived from three independent experiments. \* represents *p* < 0.05, which was considered a significant difference as compared to untreated cells (control).



**Figure 9.** RMSD graphs of (A) G-quartets and backbone of *c-MYC*; (B) ligand in *c-MYC* G4; (C) G-quartets and backbone of *c-KIT1*; and (D) ligand in *c-KIT1* during the 500 ns simulation are plotted against time. The G-quartet core comprises the top, middle, and bottom G-quartets. The RMSD values are measured in Å.

checked the cytotoxicity of the ligand **InqPr2** in noncancerous Lenti-X (human embryonic kidney). After 24 h of treatment with **InqPr2**, there was negligible death of Lenti-X cells, suggesting selective inhibition of the growth of cancer cell lines (Figure S5B, Supporting Information).

To evaluate the mechanism of **InqPr2**-induced cell death, a flow cytometry analysis was carried out using Annexin-V and PI dual staining assay (Figure 7). When HeLa cells were incubated with **InqPr2** (IC<sub>50</sub> = 2.0  $\mu$ M and 2 x IC<sub>50</sub> = 4.0  $\mu$ M) over a period of 24 h, the number of live cells decreased with an increase in apoptotic cells. The fraction of late apoptotic cells further increased when the ligand concentration was increased to 4.0  $\mu$ M (Figure 7C). However, cell death *via* necrosis was insignificant, suggesting that apoptosis is the primary mechanism responsible for cell death induced by **InqPr2** (Figure 7D).

**qRT-PCR Based Gene Expression Studies. q**RT-PCR was used to evaluate the effects on gene expression upon ligand treatment.<sup>42</sup> As the ligand **InqPr2** stabilizes the

promoter G4 DNA, we have investigated its influence on the *c-MYC* transcription in HeLa cells and *c-KIT* transcription in HepG2 cells by using qRT-PCR. The experiment was done utilizing a previously established procedure with slight modifications.<sup>13,43</sup> The cells were treated with 2  $\mu$ M **InqPr2** for 24 h, and the expression of mRNA was quantified by the comparative threshold method by using  $\beta$ -actin as the housekeeping gene. The expressions of the target gene were normalized against constitutively expressed  $\beta$ -actin. Relative *c*-MYC and *c-KIT* expression levels in the treated HeLa and HepG2 cells were reduced by ~2-fold compared to untreated cells (Figure 8). These results indicate that **InqPr2** downregulates *c-MYC* and *c-KIT* gene transcription.

**Molecular Modeling and Dynamics Studies.** To examine the mode of binding and stability of the **InqPr2**-G4 complexes, molecular dynamics (MD) studies were carried out using *c-MYC* (PDB ID: 1XAV)<sup>44</sup> and *c-KIT1* (PDB ID: 2O3M)<sup>45</sup> G4 structures. The ligand was optimized (Figure S6, Supporting Information) in Gaussian  $16^{46}$  and



Figure 10. Representative structure of the major cluster from the 500 ns MD simulation. (A) InqPr2 bound to 5'-end and 3'-end face of c-MYC DNA (side view); (B) axial view of the stacked ligand at the 5'-quartet of c-MYC G4 DNA; and (C) axial view of the stacked ligand at the 3'-quartet of c-MYC G4 DNA. The nitrogen atoms are represented in blue color, the phosphorous atoms are represented in orange, the oxygen atoms are represented in red, the carbon atoms of DNA are represented in white, and the carbon atoms of the ligand are represented in green. The backbone atoms of the DNA are represented in a cartoon form, and the ligand atoms in a stick form.

was then subjected to docking in AutoDock 4.2.6.<sup>47</sup> The 500 independent docked conformers were evaluated to find the various modes of binding of **InqPr2**. From the docked conformers, stacking over the G-quartets was found to be a probable binding mode. Therefore, the ligand poses, exhibiting the stacking mode at the 5'- and the 3'-ends with both *c*-MYC and *c*-KIT1 G4s (Figure S7, Supporting Information), were chosen for molecular dynamics studies. This also agrees with the 2:1 binding stoichiometry revealed in the experimental studies. Structures showing stacking modes were subjected to ESP charge calculation, followed by RESP<sup>48</sup> charge fitting. Further, with the complexes generated, an unrestrained production run for 500 ns was carried out in the GPU-accelerated version of PMEMD<sup>49–51</sup> in AMBER 18.<sup>52</sup>

The conformational stability of the complexes was investigated by calculating the RMSD of the ligand, the backbone of the DNA, and the G quartets using the first frame of the simulation as a reference. Negligible variation was observed in the RMSD values of the G-quartet throughout the simulation in *c-MYC* and *c-KIT1* complexes (Figure 9). The movement of the loop and flanking nucleotides account for the slight changes in the DNA backbone RMSD in the *c-MYC* G4 complex. The RMSF values of the quartet-forming dG varied the least in both *c-MYC* and *c-KIT1* G4s, while the flanking nucleotides and the nucleotides in the loop region showed higher fluctuations (Figure S8, Supporting Information). These indicate the flexibility of the flanking and loop nucleotides upon ligand

binding. Visualization of trajectories showed that the G4 flanking nucleotides rearranged to accommodate the ligand, specifically in *c-MYC* G4.

The trajectories of the 500 ns simulations were clustered into five ensembles. The major representative structures of c-MYC and c-KIT1 G4 complexes revealed that stacking at the 5'- and the 3'-end are the primary binding modes. One major cluster existed for ~60% of the simulation time for c-MYC (Figure 10), and ~55% simulation time for c-KIT1 G4 (Figure 11). While the quindolinium ring was stacked over the quartets, the indole ring was oriented perpendicular to the G-quartets. The flanking nucleotide dT5 stacked over the ligand binding at the 5'-quartet of the c-MYC G4 DNA (Figure 10). The nucleotide dA18 stacked over the ligand binding at the 3'-quartet of the c-KIT1 G4 DNA. Visual inspection of the trajectories indicated that the ligand binding at the 5'-end showed slight reorientation over the G-quartets in the case of both c-MYC and c-KIT1 G4 DNAs, while the ligands at the 3'-end showed negligible reorientation.

To probe noncovalent interactions between the ligand and nucleotides, the distances between the protonated nitrogen of the ligand and the negatively charged backbone of the G4 were calculated. Apart from stacking, multiple electrostatic interactions (Figures S9, S10, and Table S7, Supporting Information) also stabilize **InqPr2**-G4 structures. The primary electrostatic interaction persisting in the *c-MYC* G4 is N4 of the ligand bound at the 3'-quartet with the OP2 of the dT11 (Figure S9, Supporting Information). The N4 of the ligand bound at the 5'-quartet interacted with the OP1 of



**Figure 11.** Representative structure of the major cluster from the 500 ns MD simulation. (A) **InqPr2** bound to 5'-end and 3'-end face of *c*-*KIT1* DNA (side view); (B) axial view of the stacked ligand at the 5'-quartet of *c*-*KIT1* G4 DNA; and (C) axial view of the stacked ligand at the 3'-quartet of *c*-*KIT1* G4 DNA. The nitrogen atoms are represented in blue color, the phosphorous atoms are represented in orange, the oxygen atoms are represented in red, the carbon atoms of DNA are represented in white, and the carbon atoms of the ligand are represented in green. The backbone atoms of the DNA are represented in a cartoon form, and the ligand atoms in a stick form.

dG13 in *c-MYC* G4 DNA (Figure S9, Supporting Information). In the case of *c-KIT1* G4, the most persistent electrostatic interactions are between N4 and N5 of the ligand bound at the 3'-quartet with OP1 of dG16 and dG17, respectively (Figure S10, Supporting Information).

The binding free energies of the InqPr2-bound G4s were estimated using the MM-PBSA<sup>53</sup> module of AMBER 18. Energy parameters (Tables S8 and S9, Supporting Information) showed that the entropy values are comparable in the case of *c*-MYC and *c*-KIT1 complexes, while the enthalpy values are different (*c*-KIT1 > *c*-MYC). This indicates that the enthalpy gain in the complex dictates the stabilization. In both cases, the binding to 3'-quartet is energetically more favorable.

To discern the selective binding of ligands to parallel G4s, we have also performed modeling studies with hybrid and antiparallel topologies. The ligand **InqPr2** was docked onto the telomeric hybrid-2 (PDB ID: 2JPZ)<sup>54</sup> and the antiparallel G4 (PDB ID: 143D)<sup>55</sup> DNAs. None of 500 independent docked conformers generated for each system could dock well to the G4 structures. In both cases, only partial access to the groove was observed for the ligand. Conformers with partial access to the groove were chosen as the starting structures for 500 ns MD simulations. No proper stacking or groove binding were observed in both the complexes during MD simulations (Figures S11 and S12, Supporting Information). The ligand did not fall off entirely or move

away from the antiparallel G4 complex. In the hybrid G4, the ligand completely lost access to the groove in the first 100 ns and changed drastically from the docked structure. The indole ring is perpendicular to the quindolinium ring of the ligand, which prevents stacking or groove binding. This structural feature of **InqPr2** is likely responsible for the improved binding of the ligand toward parallel promoter G4 structures.

In conclusion, MD studies support 2:1 (**InqPr2**-G4) binding, and the stacking and electrostatic interactions account for the stability induced by **InqPr2** to the parallel G4s of *c-MYC* and *c-KIT1* DNAs. The ligand's structural features, particularly the indole ring's relative position to the quindolinium ring, result in enhanced binding toward the parallel G4 topology compared to the antiparallel and hybrid topologies.

#### CONCLUSIONS

In summary, we have synthesized three indole-fused quindoline derivatives as G4 stabilizers. Biophysical studies showed that ligands exhibit favorable stabilization of the parallel topology of the promoter G4 DNAs (*c-MYC* and *c-KIT1*) over the antiparallel promoter, hybrid topology of telomeric G4s and duplex DNAs. Of the three molecules, the one containing two propyl side chains, **InqPr2** was the most promising. **InqPr2** induces apoptotic cell death with the effective downregulation of *c-MYC* and *c-KIT* gene expression

Article

in cells. Modeling studies revealed that along with stacking to quartets, the electrostatic interactions of the protonated side chains play a role in stabilizing G4 structures. The relative position of the indole ring with respect to the quindolinium ring is one of the critical structural features, which impart selectivity to the ligand toward parallel G4 DNAs. Our study demonstrates that with further fine tuning, these small molecule scaffolds could be promising candidates for anticancer drug development, harnessing G4 targets.

#### ASSOCIATED CONTENT

#### **1** Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.biochem.2c00373.

General experiment details, synthetic procedures, details of mechanism, crystallographic data, CD melting and titration curves, fluorimetric titration curves, *Taq* polymerase stop assay results, cell viability assay curves, additional figures, plots and tables from molecular modeling and dynamics studies, sequences of DNAs used, and copies of <sup>1</sup>H NMR. <sup>13</sup>C NMR and HRMS spectra (PDF)

#### AUTHOR INFORMATION

#### **Corresponding Author**

P. I. Pradeepkumar – Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; orcid.org/0000-0001-9104-3708; Email: pradeep@ chem.iitb.ac.in

#### Authors

- Satendra Kumar Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Sushree Prangya Priyadarshinee Pany Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Sruthi Sudhakar Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Sushma B. Singh Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; orcid.org/0000-0002-2615-7247
- Chaitra S. Todankar Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.biochem.2c00373

#### **Author Contributions**

<sup>T</sup>S.K. and S.P.P.P. authors contributed equally. **Notes** 

#### m

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work is supported by grants from the Science and Engineering Research Board (SERB), Government of India, to P.I.P. We are thankful to IIT Bombay for providing the FACS facility and grateful to IITB-Spacetime-HPC resources. We acknowledge the DST-FIST (grant no. SR/FST/CS-II/2017/37) for NMR and HRMS facilities. We also thank Prof. Ruchi Anand for providing access to her laboratory facilities. We thank Prof. Santosh G Gharpure for discussions on the reaction mechanism, Dr. S. Harikrishna for the guidance in the MD studies, Dr. Dipanjan Mondal for his assistance in

the single crystal X-ray crystallographic analysis, and Dr. Saurja Dasgupta for the critical reading of the manuscript. S.P.P. thanks the Council of Scientific and Industrial Research (CSIR), S.K. thanks the University Grant Commission (UGC), and S.S. thanks the Prime Minister Research Fellowship (PMRF) for Ph.D. fellowships. C.S.T. thanks SERB and IRCC-IIT Bombay for the fellowships, and S.B.S. thanks IIT Bombay for the Institute Post-Doctoral Fellowship.

#### REFERENCES

(1) Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S. Quadruplex DNA: Sequence, Topology and Structure. *Nucleic Acids Res.* **2006**, *34*, 5402–5415.

(2) Ma, Y.; Iida, K.; Nagasawa, K. Topologies of G-Quadruplex: Biological Functions and Regulation by Ligands. *Biochem. Biophys. Res. Commun.* 2020, 531, 3–17.

(3) Dhamodharan, V.; Pradeepkumar, P. I. Specific Recognition of Promoter G-Quadruplex DNAs by Small Molecule Ligands and Light-up Probes. *ACS Chem. Biol.* **2019**, *14*, 2102–2114.

(4) Dhamodharan, V.; Pradeepkumar, P. I. Specific Recognition of Promoter G-Quadruplex DNAs by Small Molecule Ligands and Light-up Probes. *ACS Chem. Biol.* **2019**, *14*, 2102–2114.

(5) Mathad, R. I.; Hatzakis, E.; Dai, J.; Yang, D. c-MYC promoter G-quadruplex formed at the 5'-end of NHE III 1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. *Nucleic Acids Res.* **2011**, *39*, 9023–9033.

(6) Chaudhuri, R.; Bhattacharya, S.; Dash, J.; Bhattacharya, S. Recent Update on Targeting C-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. *J. Med. Chem.* **2021**, *64*, 42–70.

(7) Hu, M.-H.; Wang, Y.-Q.; Yu, Z.-Y.; Hu, L.-N.; Ou, T.-M.; Chen, S.-B.; Huang, Z.-S.; Tan, J.-H. Discovery of a New Four-Leaf Clover-Like Ligand as a Potent c-MYC Transcription Inhibitor Specifically Targeting the Promoter G-Quadruplex. J. Med. Chem. 2018, 61, 2447–2459.

(8) Kumar, S.; Reddy Sannapureddi, R. K.; Todankar, C. S.; Ramanathan, R.; Biswas, A.; Sathyamoorthy, B.; Pradeepkumar, P. I. Bisindolylmaleimide Ligands Stabilize C-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. *Biochemistry* **2022**, *61*, 1064–1076.

(9) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.

(10) Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.

(11) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.

(12) Carvalho, J.; Paiva, A.; Cabral Campello, M. P.; Paulo, A.; Mergny, J.-L.; Salgado, G. F.; Queiroz, J. A.; Cruz, C. Aptamer-Based Targeted Delivery of a G-Quadruplex Ligand in Cervical Cancer Cells. *Sci. Rep.* **2019**, *9*, 7945.

(13) Bookout, A. L.; Cummins, C. L.; Mangelsdorf, D. J.; Pesola, J. M.; Kramer, M. F. High-Throughput Real-Time Quantitative Reverse Transcription PCR. *Curr. Protoc. Mol. Biol.* **2006**, *73*, 1–28.

 (14) Haider, S.; Neidle, S. Molecular modeling and simulation of G-quadruplexes and quadruplex-ligand complexes. *Methods Mol. Biol.* 2010, 608, 17–37.

(15) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. **2006**, 25, 247–260.

(16) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. *J. Comput. Chem.* **2004**, *25*, 1157–1174.

(17) Galindo-Murillo, R.; Robertson, J. C.; Zgarbová, M.; Šponer, J.; Otyepka, M.; Jurečka, P.; Cheatham, T. E. Assessing the Current

State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114-4127.

(18) Turq, P.; Lantelme, F.; Friedman, H. L. Brownian Dynamics: Its Application to Ionic Solutions. J. Chem. Phys. **1977**, 66, 3039– 3044.

(19) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. *J. Chem. Phys.* **1984**, *81*, 3684–3690.

(20) Roe, D. R.; Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. *J. Chem. Theory Comput.* **2013**, *9*, 3084–3095.

(21) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera?A visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25*, 1605–1612.

(22) Gellért, E.; Raymond-Hamet; Schlittler, E. Die Konstitution Des Alkaloids Cryptolepin. *Helv. Chim. Acta* **1951**, *34*, 642–651.

(23) Tugusheva, N. Z.; Ryabova, S. Y.; Solov'eva, N. P.; Granik, V. G. Investigations of Indolo[3,2-b]Quinolines. *Chem. Heterocycl. Compd.* **1998**, 34, 216–221.

(24) Suresh Kumar, E. V. K.; Etukala, J. R.; Ablordeppey, S. Y. Indolo[3,2-b]quinolines: Synthesis, Biological Evaluation and Structure Activity-Relationships. *Mini Rev. Med. Chem.* **2008**, *8*, 538–554.

(25) Dai, J.; Carver, M.; Hurley, L. H.; Yang, D. Solution Structure of a 2:1 Quindoline-c-MYC G-Quadruplex: Insights into G-Quadruplex-Interactive Small Molecule Drug Design. J. Am. Chem. Soc. 2011, 133, 17673–17680.

(26) Ou, T.-M.; Lu, Y.-J.; Zhang, C.; Huang, Z.-S.; Wang, X.-D.; Tan, J.-H.; Chen, Y.; Ma, D.-L.; Wong, K.-Y.; Tang, J. C.-O.; Chan, A. S.-C.; Gu, L.-Q. Stabilization of G-Quadruplex DNA and down-Regulation of Oncogene c-Myc by Quindoline Derivatives. *J. Med. Chem.* **2007**, *50*, 1465–1474.

(27) Mendes, I. M.; Bahls, A.; Aljnadi, E.; Paulo, A. Indoloquinolines as scaffolds for the design of potent G-quadruplex ligands. *Bioorg. Med. Chem. Lett.* **2022**, *72*, 128862.

(28) Lavrado, J.; Borralho, P. M.; Ohnmacht, S. A.; Castro, R. E.; Rodrigues, C. M. P.; Moreira, R.; Santos, D. J. V. A.; Neidle, S.; Paulo, A. Synthesis, G-Quadruplex Stabilisation, Docking Studies, and Effect on Cancer Cells of Indolo[3,2-b]Quinolines with One, Two, or Three Basic Side Chains. *ChemMedChem* 2013, 8, a-n.

(29) Funke, A.; Dickerhoff, J.; Weisz, K. Towards the Development of Structure-Selective G-Quadruplex-Binding Indolo[3,2-b]-quinolines. *Chem.—Eur. J.* **2016**, *22*, 3170–3181.

(30) Vianney, Y. M.; Weisz, K.Indoloquinoline Ligands Favor Intercalation at Quadruplex-Duplex Interfaces. *Chem.—Eur. J.*. 2022, 28(). DOI: 10.1002/chem.202103718.

(31) Diveshkumar, K. V.; Sakrikar, S.; Rosu, F.; Harikrishna, S.; Gabelica, V.; Pradeepkumar, P. I. Specific Stabilization of C-MYC and c-KIT G-Quadruplex DNA Structures by Indolylmethyleneindanone Scaffolds. *Biochemistry* **2016**, *55*, 3571–3585.

(32) Sharma, S.; Kundu, B. Unprecedented SnCl2·2H2O-mediated intramolecular cyclization of nitroarenes via C-N bond formation: a new entry to the synthesis of cryptotackieine and related skeletons. *Tetrahedron Lett.* **2008**, *49*, 7062–7065.

(33) Guédin, A.; Lacroix, L.; Mergny, J.-L.Thermal Melting Studies of Ligand DNA Interactions. In *Drug-DNA interaction protocols*; Springer, 2010, pp 25–35. DOI: 10.1007/978-1-60327-418-0\_2

(34) Dhamodharan, V.; Harikrishna, S.; Jagadeeswaran, C.; Halder, K.; Pradeepkumar, P. I. Selective G-Quadruplex DNA Stabilizing Agents Based on Bisquinolinium and Bispyridinium Derivatives of 1,8-Naphthyridine. *J. Org. Chem.* **2012**, *77*, 229–242.

(35) Membrino, A.; Cogoi, S.; Pedersen, E. B.; Xodo, L. E. G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy. *PLoS One* **2011**, *6*, No. e24421.

(36) Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R. A.; Yang, D. Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel/Antiparallel Strands in Potassium Solution. Nucleic Acids Res. 2006, 34, 2723–2735.

Article

(37) Usatyi, A. F.; Shlyakhtenko, L. S. Temperature Dependence of CD Spectra of DNA from Various Sources. *Biopolymers* **1973**, *12*, 45–51.

(38) Dash, J.; Shirude, P. S.; Hsu, S.-T. D.; Balasubramanian, S. Diarylethynyl Amides That Recognize the Parallel Conformation of Genomic Promoter DNA G-Quadruplexes. *J. Am. Chem. Soc.* 2008, 130, 15950–15956.

(39) Luedtke, N. Targeting G-Quadruplex DNA with Small Molecules. *Chim. Int. J. Chem.* **2009**, *63*, 134–139.

(40) kong, J.-N.; Zhang, C.; Zhu, Y.-C.; Zhong, K.; Wang, J.; Chu, B.-B.; Yang, G.-Y. Identification and Characterization of G-Quadruplex Formation within the EP0 Promoter of Pseudorabies Virus. *Sci. Rep.* **2018**, *8*, 14029.

(41) Riss, T.; Moravec, R.; Niles, A. Selecting Cell-Based Assays for Drug Discovery Screening. *Cell Notes* **2005**, *13*, 16–21.

(42) Bustin, S. A.; Mueller, R. Real-Time Reverse Transcription PCR (QRT-PCR) and Its Potential Use in Clinical Diagnosis. *Clin. Sci.* 2005, *109*, 365–379.

(43) Kramer, M. F.; Coen, D. M. Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization. *Curr. Protoc. Mol. Biol.* **2001**, *56*, 15.1.1–15.1.14 Chapter 15.

(44) Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Solution Structure of the Biologically Relevant G-Quadruplex Element in the Human c-MYC Promoter. Implications for G-Quadruplex Stabilization. *Biochemistry* **2005**, *44*, 2048–2058.

(45) Phan, A. T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D. J. Structure of an Unprecedented G-Quadruplex Scaffold in the Human c-Kit Promoter. J. Am. Chem. Soc. 2007, 129, 4386–4392.

(46) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. a.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. a.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, a. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, a. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. a., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. a.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, a. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. G16\_C01. 2016, p Gaussian 16, Revision C.01, Gaussian, Inc., Wallin.

(47) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *J. Comput. Chem.* **2009**, *30*, 2785–2791.

(48) Fox, T.; Kollman, P. A. Application of the RESP Methodology in the Parametrization of Organic Solvents. J. Phys. Chem. B **1998**, *102*, 8070–8079.

(49) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888.

(50) Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555.

(51) Le Grand, S.; Götz, A. W.; Walker, R. C. SPFP: Speed without compromise-A mixed precision model for GPU accelerated molecular dynamics simulations. *Comput. Phys. Commun.* **2013**, *184*, 374–380.

(52) Case, D. A.; Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; Cheatham, T. E., III; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Gilson, M. K.AMBER 2018; Univ. California: San Fr, 2018; Vol. 2018.

(53) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. *Acc. Chem. Res.* **2000**, 33, 889–897.

(54) Dai, J.; Carver, M.; Punchihewa, C.; Jones, R. A.; Yang, D. Structure of the Hybrid-2 Type Intramolecular Human Telomeric G-Quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. *Nucleic Acids Res.* **2007**, *35*, 4927–4940.

(55) Wang, Y.; Patel, D. J. Solution Structure of the Human Telomeric Repeat d[AG3(T2AG3)3] G-Tetraplex. *Structure* 1993, 1, 263–282.

## **Recommended by ACS**

# Fluorescence of Bimolecular Guanine Quadruplexes: From Femtoseconds to Nanoseconds

Evangelos Balanikas, Dimitra Markovitsi, et al. DECEMBER 28, 2022 THE JOURNAL OF PHYSICAL CHEMISTRY B

READ 🗹

Ion-Dependent Conformational Plasticity of Telomeric G-Hairpins and G-Quadruplexes

Alexa M. Salsbury, Justin A. Lemkul, et al. JUNE 29, 2022 ACS OMEGA

Inhibitory Effects of Mismatch Binding Molecules on the Repair Reaction of Uracil-Containing DNA

Anisa Ulhusna, Kazuhiko Nakatani, *et al.* OCTOBER 17, 2022 BIOCHEMISTRY

READ 🗹

#### A Spectroscopic Approach to Unravel the Local Conformations of a G-Quadruplex Using CD-Active Fluorescent Base Analogues

Davis Jose, Adriana Zelaya, *et al.* NOVEMBER 16, 2022 BIOCHEMISTRY

READ 🗹

Get More Suggestions >

# Targeting Parallel Topology of G-Quadruplex Structures by Indolefused Quindoline Scaffolds

Satendra Kumar<sup>†</sup>, Sushree Prangya Priyadarshinee Pany<sup>†</sup>, Sruthi Sudhakar, Sushma B. Singh,

Chaitra S. Todankar and P. I. Pradeepkumar\*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Email: pradeep@chem.iitb.ac.in

†These authors contributed equally

### TABLE OF CONTENTS

|            | General Experimental Details                                                                                                                                                                                  | Page S1      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | Synthetic procedures                                                                                                                                                                                          | Page S1-S4   |
| Scheme S1  | The detailed mechanism on the formation of compound 4                                                                                                                                                         | Page S4      |
| Scheme S2  | The synthetic scheme for the formation of <b>InqPr1</b>                                                                                                                                                       | Page S5      |
| Figure S1  | Normalized CD melting curves of <i>h-RAS1</i> , telomeric and duplex DNAs                                                                                                                                     | Page S5      |
| Figure S2  | CD spectra of ligands with <i>h-RAS1</i> and <i>c-KIT1</i> DNAs in the absence of added metal cations<br>Fluorimetric titration curves of ligand <b>InqPr2</b> with <i>c-KIT1</i> , <i>h-RAS1</i> , telomeric | Page S6      |
| Figure S3  | and duplex DNA                                                                                                                                                                                                | Page S7      |
| Figure S4  | <i>Taq</i> DNA polymerase stop assay of mutated <i>c-MYC</i> with <b>InqPr2</b>                                                                                                                               | Page S8      |
| Figure S5  | Cell viability assay of HeLa, HepG2 and Lenti-X with InqPr2                                                                                                                                                   | Page S8      |
| Figure S6  | Optimized structure, cartesian coordinates and RESP charges of <b>InqPr2</b> used for docking                                                                                                                 | Page S9-S13  |
| Figure S7  | Docked structures of InqPr2 used for simulation                                                                                                                                                               | Page S13     |
| Figure S8  | Per-nucleotide RMSF values of <b>InqPr2</b> with <i>c</i> - <i>MYC</i> and <i>c</i> - <i>KIT1</i>                                                                                                             | Page S14     |
| Figure S9  | Major electrostatic interactions of <b>InqPr2</b> with <i>c-MYC</i> G4 DNA                                                                                                                                    | Page S15     |
| Figure S10 | Major electrostatic interactions of <b>InqPr2</b> with <i>c</i> - <i>KIT1</i> G4 DNA                                                                                                                          | Page S15     |
| Figure S11 | Orientation of <b>InqPr2</b> with telomeric hybrid 2 G4 DNA                                                                                                                                                   | Page S16     |
| Figure S12 | Orientation of <b>InqPr2</b> with telomeric antiparallel G4 DNA                                                                                                                                               | Page S17     |
| Table S1   | Selected crystallographic data of compound 4                                                                                                                                                                  | Page S18-S19 |
| Table S2   | Bond lengths [Å] and angles [°] for Compound 4                                                                                                                                                                | Page S19-24  |
| Table S3   | Selected crystallographic data of InqPr1                                                                                                                                                                      | Page S24-25  |
| Table S4   | Bond lengths [Å] and angles [°] for <b>InqPr1</b>                                                                                                                                                             | Page S26-S27 |
| Table S5   | Oligonucleotides used for various biophysical and biochemical experiments                                                                                                                                     | Page S28     |

| Table S6                | Primers used for qRT-PCR experiments                                                                                                         | .Page S28      |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Table S7                | Average distances and percentage occupancies of major electrostatic interaction of <b>InqPr2</b> with <i>c-MYC</i> and <i>c-KIT1</i> G4 DNAs | f<br>.Page S29 |
| Table S8                | Binding free energy values of <b>InqPr2</b> with <i>c-MYC</i> G4 DNA                                                                         | .Page S29      |
| Table S9                | Binding free energy values of <b>InqPr2</b> with <i>c</i> - <i>KIT1</i> G4 DNA                                                               | .Page S30      |
| <sup>1</sup> H NMR spe  | ctrum of compound <b>3</b>                                                                                                                   | .Page S31      |
| <sup>13</sup> C NMR spe | ectrum of compound 3                                                                                                                         | Page S31       |
| <sup>1</sup> H NMR spe  | ctrum of compound 4                                                                                                                          | .Page S32      |
| <sup>13</sup> C NMR spe | ectrum of compound <b>4</b>                                                                                                                  | Page S32       |
| <sup>1</sup> H NMR spe  | ctrum of InqEt1                                                                                                                              | .Page S33      |
| <sup>13</sup> C NMR spe | ectrum of InqEt1                                                                                                                             | .Page S33      |
| <sup>1</sup> H NMR spe  | ctrum of InqEt2                                                                                                                              | .Page S34      |
| <sup>13</sup> C NMR spe | ectrum of InqEt2                                                                                                                             | Page S34       |
| <sup>1</sup> H NMR spe  | ctrum of compound 5                                                                                                                          | .Page S35      |
| <sup>13</sup> C NMR spe | ectrum of compound 5                                                                                                                         | Page S35       |
| <sup>1</sup> H NMR spe  | ctrum of InqPr1                                                                                                                              | .Page S36      |
| <sup>13</sup> C NMR spe | ectrum of InqPr1                                                                                                                             | Page S36       |
| <sup>1</sup> H NMR spe  | ctrum of InqPr2                                                                                                                              | .Page S37      |
| <sup>13</sup> C NMR spe | ectrum of InqPr2                                                                                                                             | Page S37       |
| HRMS Spect              | tra of compound <b>3</b>                                                                                                                     | Page S38       |
| HRMS Spect              | tra of compound <b>4</b>                                                                                                                     | Page S39       |
| HRMS Spect              | tra of <b>InEt1</b>                                                                                                                          | .Page S40      |
| HRMS Spect              | tra of <b>InEt2</b>                                                                                                                          | Page S41       |
| HRMS Spect              | tra of compound <b>5</b>                                                                                                                     | Page S42       |
| HRMS Spect              | tra of <b>InqPr1</b>                                                                                                                         | Page S43       |
| HRMS Spect              | tra of <b>InqPr2</b>                                                                                                                         | .Page S44      |

#### **General Experimental Details**

All chemicals and solvents used were obtained from commercial sources (Merck, India; Spectrochem, India; Sigma Aldrich, Germany and Alfa Aesar; UK). Dry solvents CH<sub>3</sub>CN and EtOH were dried using calcium hydride and magnesium, respectively. Commercially obtained DMF was dried overnight under the nitrogen atmosphere by incubation in activated molecular sieves (4 Å). Thinlayer chromatography (TLC) was performed using silica gel plates (Merck, Germany) pre-coated with fluorescent indicator and further visualized under UV light (260 nm). Silica gel (100-200 mesh) and basic alumina (60-325 mesh BSS) were used for column chromatography to purify the compounds wherever required.<sup>1</sup>H NMR and <sup>13</sup>C NMR were recorded on 400 MHz and 500 MHz instruments, respectively. The chemical shifts in parts per million (ppm) were recounted downfield to the TMS signal (0 ppm) and referenced from the TMS signal or residual proton signal of deuterated solvents: CDCl<sub>3</sub> (7.26 ppm), CD<sub>3</sub>OD (3.31 ppm), and DMSO- $d_6$  (2.5 ppm) for <sup>1</sup>H NMR spectra; and CDCl<sub>3</sub> (77.2 ppm), CD<sub>3</sub>OD (49.1 ppm), and DMSO-  $d_6$  (39.5 ppm) for <sup>13</sup>C NMR spectra. Multiplicities of <sup>1</sup>H NMR spin couplings are reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), and (q) quintet or m (multiplet and overlapping spin systems). Values for apparent coupling constants (J) are reported in Hz. High-resolution mass spectra (HRMS) were recorded using a Q-TOF analyzer in positive ion electrospray ionization (ESI) mode. HeLa (human cervical cancer) cell lines and liver hepatocellular cancer cell lines (HepG2) were obtained from NCCS, Pune. The enzymes (Taq DNA polymerase, PNK), dNTPs, Gene JET RNA purification kit and verso c-DNA synthesis kit were purchased from Thermo Scientific. Brilliant III Ultra-Fast SYBR green qPCR master mix was purchased from Agilent Technologies. All the media, serum, antibiotics and reagents used for cell-based experiments were purchased from HiMedia, MP Biomedicals and Glibco. The reagent used for cytotoxicity assay, Cell titer Glow was purchased from Promega.

#### **Synthetic Procedures**

#### 3, 3'-((2-nitrophenyl)methylene)bis(1H-indole) (3)

A mixture of indole **1** (380 mg, 3.3 mmol), 2-nitrobenzaldehyde **2** (250 mg, 1.6 mmol) and I<sub>2</sub> (80 mg, 0.3 mmol) was stirred in ACN (10 mL) for 20 min. Then the solution of the reaction mixture was concentrated, and aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (2 x 10 mL) was added. The compound was then extracted with ethyl acetate (2 x 150 mL). The solvent was evaporated to get the pure orange solid compound **3** (400 mg, 51 %).  $R_f$  = 0.5 (30% ethyl acetate in pet ether). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  =7.85 (dd, J = 8.0, 1.0 Hz, 1H), 7.79 (br. s, 2H), 7.37–7.42 (m, 3H), 7.31-7.36 (m, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.18 (td, J = 7.24, 1.0 Hz, 2H), 7.04 (t, J = 14.9 Hz, 2H), 6.68 (s, 1H), 6.51 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 149.8, 138.1, 136.7, 132.5, 131.2, 127.3, 126.8, 124.4, 124.0 122.3, 119.7, 119.6,

117.6, 111.4, 34.8 HRMS (ESI): calcd for C<sub>23</sub>H<sub>17</sub>N<sub>3</sub>NaO<sub>2</sub>, [M+Na]<sup>+</sup> 390.1213; found, [M+Na]<sup>+</sup> 390.1213

#### 11-(1H-indol-3-yl)-10H-indolo[3,2-b]quinoline (4)

A solution of compound **3** (130 mg, 0.4 mmol) and SnCl<sub>2</sub>.2H<sub>2</sub>O (400 mg, 2.0 mmol) in methanol (2 mL) was refluxed for 1 h. Then the solution was allowed to cool and poured into ice cold water, and 5% NaHCO<sub>3</sub> (30 mL) solution was added to maintain the pH at 8.0. Ethyl acetate (2 x 50 mL) was added and filtered through a celite bed. The organic layer was dried over MgSO<sub>4</sub>, and the solvent was evaporated. The residue was purified by column chromatography (20% ethyl acetate in pet ether) to yield the bright yellow solid compound **4** (80 mg, 64%).  $R_f$ = 0.45 (30% ethyl acetate in pet ether). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  = 11.81 (s, 1H), 10.89 (s, 1H), 8.40 (d, *J* = 7.7 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 2.4 Hz, 1H), 7.62-7.68 (m, 2H), 7.52-7.60 (m, 2H), 7.44-7.48 (m, 1H), 7.22-7.30 (m, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.1 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD):  $\delta$  = 145.6, 144.6, 144.4, 137.0, 132.1, 129.8, 129.6, 127.3, 127.1, 126.3, 126.2, 125.9, 124.9, 122.2, 121.8, 121.7, 120.6, 120.1, 119.8, 119.7, 112.5, 112.3, 107.8 HRMS (ESI): calcd for C<sub>23</sub>H<sub>16</sub>N<sub>3</sub>, [M+ H]<sup>+</sup> 334.1338; found, [M+ H]<sup>+</sup>334.1339 ( $\Delta m$  = 0.0001 and error = 0.2 ppm)

#### 10-(3-bromopropyl)-11-(1-(3-bromopropyl)-1H-indol-3-yl)-10H-indolo[3,2-b]quinoline (5)

To a solution of 4 (100 mg, 0.3 mmol) in dry ACN (4 mL), Cs<sub>2</sub>CO<sub>3</sub> (400 mg, 1.2 mmol) was added and refluxed at 80 °C for 1 h. 1,2 dibromopropane (800 mg, 4 mmol) was added to the heated solution and further refluxed at the same temperature for 24 h. The solvent was evaporated and the solid residue was dissolved in ethyl acetate (2 x 50 mL) and washed with H<sub>2</sub>O (2 x 20 mL). The organic layer was concentrated under reduced pressure and purified by column chromatography (15% ethyl acetate in pet ether) to yield the yellow solid compound 7 (110 mg, 60 %).  $R_f = 0.9$  (30% ethyl acetate in pet ether). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) :  $\delta = 8.63$  (d, J = 7.5 Hz, 1H), 8.40 (dd, J = 8.3, 0.6 Hz, 1H), 7.72 (dd, J = 8.5, 0.8 Hz, 1H), 7.61-7.67 (m, 2H), 7.57 (d, J = 8.3 Hz, 1H), 7.34-7.40 (m, 5H), 7.17(d, J = 7.9 Hz, 1H), 7.10 (td, J = 7.1, 0.6 Hz, 1H), 4.53 (t, J = 6.5 Hz, 2H), 3.89-4.03 (m, 10.10)2H), 3.45-3.49 (m, 2H), 2.81 (dt, J = 10.1, 5.9 Hz, 1H), 2.46 - 2.57 (m, 3H), 1.73 - 1.92 (m, 2H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 146.5$ , 145.1, 144.0, 135.9, 132.0, 129.8, 129.3, 129.2, 128.3, 128.2, 126.4, 125.3, 125.1, 123.0, 122.1, 122.0, 120.7, 120.2, 120.2, 119.1, 109.9, 109.0, 108.8, 44.5, 42.8, 32.8, 31.7, 30.2, 30.0. HRMS (ESI): calcd for C<sub>29</sub>H<sub>25</sub>Br<sub>2</sub>N<sub>3</sub>, [M+H]<sup>+</sup> 574.0486; found, [M]<sup>+</sup> 574.0488 11-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-indol-3-yl)-10H-indolo[3,2-b]quinolone (InqEt1) and 10-(2-(pyrrolidin-1-yl)ethyl)-11-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-indol-3-yl)-10H-indolo[3,2-b] quinoline (InqEt2)

To a solution of **4** (100 mg, 0.3 mmol) in dry ACN (10 mL), Cs<sub>2</sub>CO<sub>3</sub> (488.7 mg, 1.5 mmol) was added and refluxed at 80 °C for 1 h. 1-(2-chloroethyl) pyrrolidine hydrogen chloride (204 mg, 1.2 mmol) was added to the heated solution and refluxed at the same temperature for 48 h. The solvent was evaporated, and the solid residue was dissolved in ethyl acetate  $(2 \times 50 \text{ mL})$  and washed with H<sub>2</sub>O  $(2 \times 20 \text{ mL})$ . The organic layer was concentrated under reduced pressure and purified by column chromatography (8% MeOH in DCM) to yield the brown solid **IngEt1** and a yellow solid **IngEt2**.

**InqEt1** (39 mg, 30%).  $R_f$  = 0.5 (10% MeOH in ethyl acetate). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD): δ = 8.56 (d, *J* = 7.7 Hz, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.59-7.71(m, 4H), 7.5 (s, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.33-7.38(m, 2H), 7.24 (td, *J* = 6.9, 1 Hz, 1H), 6.98-7.06 (m, 2H), 4.01-4.19 (m, 2H), 2.20-2.44 (m, 2H), 1.78-1.99 (m, 4H), 1.53 (m, 4H). <sup>13</sup>C NMR (100 MHz, MeOD): δ = 146.9, 146.5, 144.5, 137.9, 133.4, 131.5, 130.0, 129.7, 128.6, 127.9, 126.9, 126.9, 126.2, 123.6, 123.0, 122.8, 122.4, 121.4, 121.3, 120.2, 113.1, 110.5, 109.2, 54.4, 54.1, 43.4, 24.0. HRMS (ESI): calcd for C<sub>29</sub>H<sub>27</sub>N<sub>4</sub>, [M+H]<sup>+</sup> 431.2230; found, [M]<sup>+</sup> 431.2230.

**InqEt2** (34 mg, 21%).  $R_f$ = 0.4 (10% MeOH in ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 8.61 (d, *J* =7.5 Hz, 1H), 8.35 (d, *J* =7.9 Hz, 1H), 7.72 (dd, *J* = 8.5, 0.8 Hz, 1H), 7.60-7.64 (m, 2H), 7.53 (d, *J* =8.3 Hz, 1 H), 7.43 (d, *J* =8.2 Hz, 1 H), 7.38 (s, 1H), 7.28 – 7.36 (m, 3H), 7.18 (d, *J* =7.8 Hz, 1H), 7.07 (td, *J* = 7.1, 0.6 Hz, 1H), 4.44 (t, *J* =14.5 Hz, 2H), 3.99 – 4.17 (m, 2H), 3.37 - 3.49 (m, 1H), 3.04 (t, *J* =7.3 Hz, 2H), 2.63 – 2.69 (m, 4H), 2.44 (td, *J* =11.3, 5.2 Hz, 1H), 2.25 (td, *J* =11.4, 5.4 Hz, 1H), 1.93 – 1.99 (m, 2H), 1.78 – 1.85 (m, 5H), 1.51-1.54 (m, 4H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 145.3, 144.1, 136.3, 132.3, 129.9, 129.5, 129.3, 128.7, 128.5, 126.3, 125.6, 125.0, 122.7, 122.2, 120.6, 120.5, 120.1, 119.4, 109.8, 109.3, 108.5, 56.1, 54.6, 53.8, 53.5, 46.1, 43.1, 23.8, 23.4. HRMS (ESI): calcd for C<sub>35</sub>H<sub>37</sub>N<sub>5</sub>, [M+H]<sup>+</sup> 528.3122; found, [M+H]<sup>+</sup> 528.3122

# 3-(3-(10-(3-(dimethylammonio)propyl)-10H-indolo[3,2-b]quinolin-11-yl)-1H-indol-1-yl)-N,Ndimethylpropan-1-aminium (InqPr1)

To a solution of **4** (100 mg, 0.3 mmol) in dry ACN (10 mL), Cs<sub>2</sub>CO<sub>3</sub> (488.7 mg, 1.5 mmol) was added and refluxed at 80 °C for 1 h. 3-chloro-N,N-dimethylpropan-1-amine hydrogen chloride (292 mg, 1.5 mmol) was added to the heated solution and refluxed at the same temperature for 48 h. The solvent was evaporated, and the solid residue was dissolved in ethyl acetate (2 x 50 mL) and washed with H<sub>2</sub>O (2 x 20 mL). The organic layer was concentrated under reduced pressure and purified by column chromatography. The purified compound was protonated by adding 0.2 mL HCl in DCM (5ml) to obtain a precipitate. The precipitate was then washed with DCM to get **InqPr1** as a yellow solid. (73 mg, 42 %).  $R_f$ = 0.2 (10% MeOH in ethyl acetate). <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O):  $\delta$  = 8.1 (t, *J* = 9.5 Hz, 1H), 7.93 (t, *J* =9.5 Hz, 1H), 7.8 (d, *J* =6.4 Hz, 1H), 7.72-7.6 (m, 3H), 7.5-7.25 (m, 4H), 7.1-7.03 (m, 1H), 6.87-6.81 (m, 1H), 6.72 (t, *J* =8.7 Hz, 1H), 4.6 - 4.4 (m, 2H), 4.0 -3.83 (m, 2H), 3.4-3.2 (m, 2H), 2.27 (s, 6H), 2.4-2.37 (m, 3H), 2.32 (s, 3H), 2.11 (s, 3H), 1.65-1.13 (m, 3H).<sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O):  $\delta$  = 145.7, 136.8, 135.8, 134.2, 133.2, 131.9, 131.7, 131.6, 130.0, 128.1, 127.2, 126.7, 126.6, 123.6, 122.8, 121.9, 121.4, 119.3, 119.1, 113.0, 111.1, 110.9, 105.3, 55.1, 54.1, 43.4, 42.9, 42.9, 42.7, 41.8, 41.2, 25.4, 23.8. HRMS (ESI): calcd for C<sub>37</sub>H<sub>41</sub>N<sub>5</sub>, [M/2]<sup>+</sup> 252.6597; found, [M/2]<sup>+</sup> 252.6599

# 10-(3-(pyrrolidin-1-yl)propyl)-11-(1-(3-(pyrrolidin-1-yl)propyl)-1H-indol-3-yl)-10H-indolo[3,2 -b] quinoline (InqPr2)

A solution of compound **5** (60 mg, 0.1 mmol) and pyrrolidine (40 mg, 0.6 mmol) was refluxed at 80 °C for 12 h. After completion of the reaction, the solvent was evaporated. The residue was purified by column chromatography (2% methanol in ethyl acetate) to yield the yellow solid ligand **InqPr2** (50 mg, 86 %).  $R_f$ = 0.6 (10% MeOH in ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.61 (d, J = 7.3 Hz, 1H), 8.36 (dd, J =8.4, 0.6 Hz, 1H), 7.71 (dd, J =8.5, 0.8 Hz, 1H), 7.55-7.64 (m, 3H), 7.39 (d, J =8.2 Hz, 1H), 7.28-7.35 (m, 4H), 7.14 (d, J =7.6 Hz, 1H), 7.04 (td, J =7.4, 0.6 Hz, 1H), 4.42 (t, J =6.8 Hz, 2H), 3.84-3.99 (m, 2H), 2.54-2.58 (m, 6H), 2.14-2.23 (m, 6H), 1.90-1.97 (m, 2H), 1.79-1.82 (m, 4H), 1.65-1.69 (m, 6H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 146.4, 145.2, 143.9, 136.0, 133.0, 129.6, 129.3, 129.1, 128.4, 128.3, 126.1, 125.4, 124.9, 122.4, 122.0, 121.9, 120.2, 120.2, 119.8, 119.3, 110.0, 109.2, 108.4, 54.1, 53.7, 53.1, 53.0, 44.5, 42.0, 29.6, 27.9, 23.5, 23.3. HRMS (ESI): calcd for C<sub>37</sub>H<sub>41</sub>N<sub>5</sub>, [M+H]<sup>+</sup> 556.3435; found, [M]<sup>+</sup> 556.3435

#### The detailed mechanism on the formation of compound 4



Scheme S1. Proposed mechanism on the formation of compound 4

#### The synthetic scheme for the formation of InqPr1



**Scheme S2.** (a) 3-chloro-N,N-dimethylpropan-1-amine hydrogen chloride, Cs<sub>2</sub>CO<sub>3</sub>, ACN, 80 °C, 48 h; (B) HCl, DCM, RT, 2 h



Normalized CD melting curves of *h-RAS1*, telomeric and duplex DNAs

**Figure S1**. Normalized CD melting curves of various quadruplex DNAs (10  $\mu$ M) and duplex DNA (15  $\mu$ M in 10 mM lithium cacodylate buffer, pH 7.2) in the absence and the presence of 5 equivalents of ligands. (A) *h*-*RAS1* DNA (50 mM KCl and 50 mM LiCl); (B) telomeric DNA (10 mM KCl and 90 mM LiCl); and (C) Duplex DNA (10 mM KCl and 90 mM LiCl).

### CD spectra of ligands with *h-RAS1* and *c-KIT1* DNAs in the presence of added metal cations



**Figure S2.** CD titration spectra of quadruplex DNAs (10  $\mu$ M in 10 mM lithium cacodylate buffer, pH 7.2) in the presence of salt with **InqPr2** (0-5 equivalents). (A) *h*-*RAS1* G4 DNA (50 mM KCl and 50 mM LiCl); and (B) *c*-*KIT1* DNA (10 mM KCl and 90 mM LiCl).

# <u>Fluorimetric titration curves of ligand InqPr2 with *c-KIT1*, *h-RAS1*, telomeric and duplex <u>DNAs</u></u>



**Figure S3.** Fluorimetric titration of **InqPr2** (100  $\mu$ M in 100 mM KCl and 10 mM lithium cacodylate buffer, pH 7.2) with increasing concentration of G4 and duplex DNAs. Emission spectra of **InqPr2** with (A) *c*-*KIT1* G4 DNA (0-6  $\mu$ M); (C) *h*-*RAS1* G4 DNA (0-10  $\mu$ M); (E) telometric G4 DNA (0-10  $\mu$ M); (F) duplex DNA (0-10  $\mu$ M); (B) plot of normalized fluorescence intensity against the logarithm of an increasing concentration of *c*-*KIT* DNA; and (D) *h*-*RAS1* DNA.

# Mut *c-MYC* DNA with InqPr2

**Figure S4.** 15% denaturing PAGE (7 M urea) of *Taq* DNA polymerase stop assay of the mutated *c-MYC* DNA with an increasing concentration of **InqPr2** (0–180  $\mu$ M). Conditions: 0.2  $\mu$ M primer, 0.1  $\mu$ M template DNA, 0.2 mM dNTPs and 1U *Taq* DNA polymerase enzyme in buffer (50 mM Tris-HCl, pH 7.2, 0.5 mM DTT, 0.1 mM EDTA, 5 mM MgCl2, 5 mM KCl). F, S and P denote full length, stop product and primer product respectively.

#### Cell viability assay of HeLa, HepG2 and Lenti-X with InqPr2



**Figure S5.** (A) Plot for the cell viability by MTT assay. HeLa and HepG2 cell lines with increasing concentration of **InqPr2** (0-10  $\mu$ M). (B) Representative graph for cell viability in Lenti-X cell with arrange of concentration of **InqPr2** (0-20  $\mu$ M). The curves in A were fitted using the dose-response equation; Error bars represent the standard deviations from three independent experiments.

#### Taq DNA polymerase stop assay of mutated c-MYC with InqPr2

### **Optimized structure, cartesian coordinates and RESP charges of InqPr2 used for docking**



#### @<TRIPOS>MOLECULE

| INQ                                                                                                        |         |         |         |         |    |   |     |           |
|------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----|---|-----|-----------|
|                                                                                                            | 85      | 92      | 1       | 0       | 0  |   |     |           |
| SMALL                                                                                                      |         |         |         |         |    |   |     |           |
| Resp                                                                                                       |         |         |         |         |    |   |     |           |
| @ <trif< td=""><td>POS&gt;ATO</td><td>М</td><td></td><td></td><td></td><td></td><td></td><td></td></trif<> | POS>ATO | М       |         |         |    |   |     |           |
| 1                                                                                                          | C1      | -0.5150 | 0.0210  | 0.5710  | cc | 1 | INQ | -0.072185 |
| 2                                                                                                          | C2      | -0.3960 | -1.3150 | 1.1150  | ca | 1 | INQ | 0.162984  |
| 3                                                                                                          | C3      | -1.6180 | 0.0080  | -0.2060 | cd | 1 | INQ | -0.117893 |
| 4                                                                                                          | H1      | -2.0360 | 0.8120  | -0.7800 | h4 | 1 | INQ | 0.185911  |
| 5                                                                                                          | C4      | -1.4640 | -2.0630 | 0.6030  | ca | 1 | INQ | 0.108132  |
| 6                                                                                                          | C5      | -1.6430 | -3.4090 | 0.9330  | ca | 1 | INQ | -0.280835 |
| 7                                                                                                          | C6      | 0.5130  | -1.9200 | 1.9910  | ca | 1 | INQ | -0.230888 |
| 8                                                                                                          | H2      | 1.3130  | -1.3450 | 2.4250  | ha | 1 | INQ | 0.162022  |
| 9                                                                                                          | C7      | -0.7320 | -3.9840 | 1.7920  | ca | 1 | INQ | -0.117754 |
| 10                                                                                                         | C8      | 0.3390  | -3.2450 | 2.3230  | ca | 1 | INQ | -0.165114 |
| 11                                                                                                         | C9      | 0.3560  | 1.2050  | 0.8050  | ca | 1 | INQ | 0.037142  |
| 12                                                                                                         | C10     | 2.4490  | 2.1820  | -1.9700 | ca | 1 | INQ | 0.316059  |
| 13                                                                                                         | C11     | 1.2300  | 1.6880  | -0.1240 | ca | 1 | INQ | -0.004146 |
| 14                                                                                                         | C12     | -0.5930 | 1.5570  | 3.1010  | ca | 1 | INQ | -0.164341 |
| 15                                                                                                         | H3      | -1.1710 | 0.6560  | 3.0120  | ha | 1 | INQ | 0.120856  |
| 16                                                                                                         | C13     | 0.8890  | 3.9020  | 3.3680  | ca | 1 | INQ | -0.290800 |
| 17                                                                                                         | H4      | 1.4660  | 4.8050  | 3.4400  | ha | 1 | INQ | 0.184304  |
| 18                                                                                                         | C14     | 1.8960  | 2.9350  | 0.1150  | cp | 1 | INQ | 0.441162  |
| 19                                                                                                         | C15     | 4.0520  | 4.3190  | -2.6900 | ca | 1 | INQ | -0.228699 |
| 20                                                                                                         | C16     | 0.9910  | 3.1500  | 2.1690  | ca | 1 | INQ | 0.507573  |
| 21                                                                                                         | C17     | 0.2490  | 1.9550  | 2.0260  | ca | 1 | INQ | -0.150436 |
| 22                                                                                                         | C18     | 2.6570  | 3.2390  | -1.0900 | cp | 1 | INQ | -0.135858 |
| 23                                                                                                         | C19     | 3.8450  | 3.2530  | -3.5660 | ca | 1 | INQ | -0.059752 |
| 24                                                                                                         | C20     | 3.4540  | 4.3200  | -1.4430 | ca | 1 | INQ | -0.064079 |
| 25                                                                                                         | H5      | 3.5970  | 5.1330  | -0.7550 | ha | 1 | INQ | 0.155983  |
| 26                                                                                                         | C21     | 3.0440  | 2.1730  | -3.2240 | ca | 1 | INQ | -0.319263 |
| 27                                                                                                         | H6      | 2.8800  | 1.3790  | -3.9300 | ha | 1 | INQ | 0.169358  |

| Page | S10 |
|------|-----|
|------|-----|

| 28 | C22 | -0.6690 | 2.2950  | 4.2420  | ca | 1 | INQ | -0.145054 |
|----|-----|---------|---------|---------|----|---|-----|-----------|
| 29 | C23 | 0.0850  | 3.4850  | 4.3820  | ca | 1 | INQ | -0.101119 |
| 30 | N1  | 1.7900  | 3.6350  | 1.1890  | nb | 1 | INQ | -0.639745 |
| 31 | N2  | -2.2070 | -1.2400 | -0.2180 | na | 1 | INQ | -0.183286 |
| 32 | C24 | -3.5160 | -1.5230 | -0.7500 | c3 | 1 | INQ | -0.071540 |
| 33 | H7  | -3.6610 | -0.8680 | -1.6050 | h1 | 1 | INQ | 0.091940  |
| 34 | H8  | -3.5290 | -2.5390 | -1.1300 | h1 | 1 | INQ | 0.091940  |
| 35 | C25 | -4.6230 | -1.3360 | 0.3000  | c3 | 1 | INQ | 0.036405  |
| 36 | H9  | -4.5890 | -0.3270 | 0.6970  | hc | 1 | INQ | 0.083580  |
| 37 | H10 | -4.4180 | -1.9940 | 1.1380  | hc | 1 | INQ | 0.083580  |
| 38 | C26 | -6.0310 | -1.6840 | -0.1800 | c3 | 1 | INQ | -0.426241 |
| 39 | H11 | -6.0440 | -2.6350 | -0.6990 | hx | 1 | INQ | 0.214537  |
| 40 | H12 | -6.7130 | -1.7510 | 0.6570  | hx | 1 | INQ | 0.214537  |
| 41 | C27 | -7.9370 | -1.1170 | -1.7260 | c3 | 1 | INQ | -0.129454 |
| 42 | C28 | -6.8920 | 0.6960  | -0.5230 | c3 | 1 | INQ | -0.129454 |
| 43 | H13 | -5.9920 | -0.5510 | -1.8880 | hn | 1 | INQ | 0.281125  |
| 44 | C29 | -8.5050 | 0.1740  | -2.2880 | c3 | 1 | INQ | 0.003644  |
| 45 | H14 | -8.5440 | -1.5130 | -0.9220 | hx | 1 | INQ | 0.124239  |
| 46 | H15 | -7.7470 | -1.8970 | -2.4490 | hx | 1 | INQ | 0.124239  |
| 47 | C30 | -8.1790 | 1.2070  | -1.1990 | c3 | 1 | INO | 0.003644  |
| 48 | H16 | -6.0280 | 1.3160  | -0.7100 | hx | 1 | INO | 0.124239  |
| 49 | H17 | -7.0040 | 0.5710  | 0.5430  | hx | 1 | INO | 0.124239  |
| 50 | H18 | -8.0190 | 0.4230  | -3.2260 | hc | 1 | INO | 0.060169  |
| 51 | H19 | -9.5660 | 0.0910  | -2.4820 | hc | 1 | INO | 0.060169  |
| 52 | H20 | -8.0450 | 2.2010  | -1.6030 | hc | 1 | INO | 0.060169  |
| 53 | H21 | -8.9790 | 1.2560  | -0.4710 | hc | 1 | INO | 0.060169  |
| 54 | N3  | 1.5830  | 1.2190  | -1.4070 | na | 1 | INO | -0.407152 |
| 55 | C31 | 1.8540  | -0.1840 | -1.6580 | c3 | 1 | INO | -0.035126 |
| 56 | H22 | 1.0250  | -0.7710 | -1.2950 | h1 | 1 | INQ | 0.097077  |
| 57 | H23 | 1.8980  | -0.3300 | -2.7310 | h1 | 1 | INO | 0.097077  |
| 58 | H24 | 0.0140  | 4.0580  | 5.2890  | ha | 1 | INO | 0.152712  |
| 59 | H25 | -1.3050 | 1.9730  | 5.0480  | ha | 1 | INO | 0.149283  |
| 60 | H26 | 4.3060  | 3.2740  | -4.5370 | ha | 1 | INO | 0.147140  |
| 61 | H27 | 4.6720  | 5.1430  | -2.9920 | ha | 1 | INQ | 0.169015  |
| 62 | H28 | 1.0100  | -3.7190 | 3.0170  | ha | 1 | INQ | 0.151840  |
| 63 | H29 | -0.8500 | -5.0150 | 2.0720  | ha | 1 | INQ | 0.155232  |
| 64 | H30 | -2.4580 | -3.9900 | 0.5410  | ha | 1 | INQ | 0.180137  |
| 65 | N4  | -6.6300 | -0.6760 | -1.1190 | n4 | 1 | INQ | 0.044166  |
| 66 | C32 | 3.1670  | -0.6560 | -1.0080 | c3 | 1 | INQ | 0.050703  |
| 67 | H31 | 3.9870  | -0.0590 | -1.4000 | hc | 1 | INQ | 0.029774  |
| 68 | H32 | 3.1140  | -0.4760 | 0.0590  | hc | 1 | INQ | 0.029774  |
| 69 | C33 | 3.4270  | -2.1320 | -1.2830 | c3 | 1 | INQ | -0.236312 |
| 70 | H33 | 3.3800  | -2.3450 | -2.3450 | hx | 1 | INQ | 0.132628  |
| 71 | H34 | 2.7170  | -2.7710 | -0.7740 | hx | 1 | INÒ | 0.132628  |
| 72 | C34 | 5.0400  | -2.5420 | 0.6480  | c3 | 1 | INO | -0.104491 |
| 73 | C35 | 5.1690  | -3.9530 | -1.2580 | c3 | 1 | INO | -0.104491 |
| 74 | H35 | 5.4560  | -1.9250 | -1.2520 | hn | 1 | INO | 0.313577  |
| 75 | C36 | 6.3520  | -3.3070 | 0.7940  | c3 | 1 | INQ | -0.020643 |

# Page S11

| 76                                                                                                        | H36     | 4.2070   | -3.0570 | 1.1070  | hx | 1 | INQ | 0.125152  |
|-----------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|----|---|-----|-----------|
| 77                                                                                                        | H37     | 5.0730   | -1.5230 | 1.0030  | hx | 1 | INQ | 0.125152  |
| 78                                                                                                        | C37     | 6.3400   | -4.3510 | -0.3470 | c3 | 1 | INQ | -0.020643 |
| 79                                                                                                        | H38     | 5.3990   | -3.9470 | -2.3140 | hx | 1 | INQ | 0.125152  |
| 80                                                                                                        | H39     | 4.2960   | -4.5700 | -1.0950 | hx | 1 | INQ | 0.125152  |
| 81                                                                                                        | H40     | 7.1920   | -2.6300 | 0.6870  | hc | 1 | INQ | 0.062466  |
| 82                                                                                                        | H41     | 6.4280   | -3.7590 | 1.7730  | hc | 1 | INQ | 0.062466  |
| 83                                                                                                        | H42     | 7.2760   | -4.3460 | -0.8890 | hc | 1 | INQ | 0.062466  |
| 84                                                                                                        | H43     | 6.1900   | -5.3550 | 0.0270  | hc | 1 | INQ | 0.062466  |
| 85                                                                                                        | N5      | 4.7920   | -2.5590 | -0.8330 | n4 | 1 | INQ | -0.020497 |
| @ <trip< td=""><td>OS&gt;BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trip<> | OS>BOND |          |         |         |    |   |     |           |
| 1                                                                                                         | 1       | 2        | 1       |         |    |   |     |           |
| 2                                                                                                         | 1       | 3        | 2       |         |    |   |     |           |
| 3                                                                                                         | 1       | 11       | 1       |         |    |   |     |           |
| 4                                                                                                         | 2       | 5        | ar      |         |    |   |     |           |
| 5                                                                                                         | 2       | 7        | ar      |         |    |   |     |           |
| 6                                                                                                         | 3       | 4        | 1       |         |    |   |     |           |
| 7                                                                                                         | 3       | 31       | 1       |         |    |   |     |           |
| 8                                                                                                         | 5       | 6        | ar      |         |    |   |     |           |
| 9                                                                                                         | 5       | 31       | 1       |         |    |   |     |           |
| 10                                                                                                        | 6       | 9        | ar      |         |    |   |     |           |
| 11                                                                                                        | 6       | 64       | 1       |         |    |   |     |           |
| 12                                                                                                        | 7       | 8        | 1       |         |    |   |     |           |
| 13                                                                                                        | 7       | 10       | ar      |         |    |   |     |           |
| 14                                                                                                        | 9       | 10       | ar      |         |    |   |     |           |
| 15                                                                                                        | 9       | 63       | 1       |         |    |   |     |           |
| 16                                                                                                        | 10      | 62       | 1       |         |    |   |     |           |
| 17                                                                                                        | 11      | 13       | ar      |         |    |   |     |           |
| 18                                                                                                        | 11      | 21       | ar      |         |    |   |     |           |
| 19                                                                                                        | 12      | 22       | ar      |         |    |   |     |           |
| 20                                                                                                        | 12      | 26       | ar      |         |    |   |     |           |
| 21                                                                                                        | 12      | 54       | 1       |         |    |   |     |           |
| 22                                                                                                        | 13      | 18       | ar      |         |    |   |     |           |
| 23                                                                                                        | 13      | 54       | 1       |         |    |   |     |           |
| 24                                                                                                        | 14      | 15       | 1       |         |    |   |     |           |
| 25                                                                                                        | 14      | 21       | ar      |         |    |   |     |           |
| 26                                                                                                        | 14      | 28       | ar      |         |    |   |     |           |
| 27                                                                                                        | 16      | 17       | 1       |         |    |   |     |           |
| 28                                                                                                        | 16      | 20       | ar      |         |    |   |     |           |
| 29                                                                                                        | 16      | 29       | ar      |         |    |   |     |           |
| 30                                                                                                        | 18      | 22       | 1       |         |    |   |     |           |
| 31                                                                                                        | 18      | 30       | ar      |         |    |   |     |           |
| 32                                                                                                        | 19      | 23       | ar      |         |    |   |     |           |
| 33                                                                                                        | 19      | 24       | ar      |         |    |   |     |           |
| 34                                                                                                        | 19      | 61<br>21 | 1       |         |    |   |     |           |
| 35                                                                                                        | 20      | 21       | ar      |         |    |   |     |           |
| 36                                                                                                        | 20      | 30       | ar      |         |    |   |     |           |
| 37                                                                                                        | 22      | 24       | ar      |         |    |   |     |           |

| 38 | 23 | 26 | ar |
|----|----|----|----|
| 39 | 23 | 60 | 1  |
| 40 | 24 | 25 | 1  |
| 41 | 26 | 27 | 1  |
| 42 | 28 | 29 | ar |
| 43 | 28 | 59 | 1  |
| 44 | 29 | 58 | 1  |
| 45 | 31 | 32 | 1  |
| 46 | 32 | 33 | 1  |
| 47 | 32 | 34 | 1  |
| 48 | 32 | 35 | 1  |
| 49 | 35 | 36 | 1  |
| 50 | 35 | 37 | 1  |
| 51 | 35 | 38 | 1  |
| 52 | 38 | 39 | 1  |
| 53 | 38 | 40 | 1  |
| 54 | 38 | 65 | 1  |
| 55 | 41 | 44 | 1  |
| 56 | 41 | 45 | 1  |
| 57 | 41 | 46 | 1  |
| 58 | 41 | 65 | 1  |
| 59 | 42 | 47 | 1  |
| 60 | 42 | 48 | 1  |
| 61 | 42 | 49 | 1  |
| 62 | 42 | 65 | 1  |
| 63 | 43 | 65 | 1  |
| 64 | 44 | 47 | 1  |
| 65 | 44 | 50 | 1  |
| 66 | 44 | 51 | 1  |
| 67 | 47 | 52 | 1  |
| 68 | 47 | 53 | 1  |
| 69 | 54 | 55 | 1  |
| 70 | 55 | 56 | 1  |
| 71 | 55 | 57 | 1  |
| 72 | 55 | 66 | 1  |
| 73 | 66 | 67 | 1  |
| 74 | 66 | 68 | 1  |
| 75 | 66 | 69 | 1  |
| 76 | 69 | 70 | 1  |
| 77 | 69 | 71 | 1  |
| 78 | 69 | 85 | 1  |
| 79 | 72 | 75 | 1  |
| 80 | 72 | 76 | 1  |
| 81 | 72 | 77 | 1  |
| 82 | 72 | 85 | 1  |
| 83 | 73 | 78 | 1  |
| 84 | 73 | 79 | 1  |
| 85 | 73 | 80 | 1  |
|    |    |    |    |

| 86 | 73                  | 85     | 1      |   |      |      |   |      |
|----|---------------------|--------|--------|---|------|------|---|------|
| 87 | 74                  | 85     | 1      |   |      |      |   |      |
| 88 | 75                  | 78     | 1      |   |      |      |   |      |
| 89 | 75                  | 81     | 1      |   |      |      |   |      |
| 90 | 75                  | 82     | 1      |   |      |      |   |      |
| 91 | 78                  | 83     | 1      |   |      |      |   |      |
| 92 | 78                  | 84     | 1      |   |      |      |   |      |
|    | @ <tripos></tripos> | SUBSTR | UCTURE |   |      |      |   |      |
| 1  | INO                 | 1      | TEMP   | 0 | **** | **** | 0 | ROOT |

**Figure S6.** The optimized structure of **InqPr2**, which was used for docking studies. The ligand was optimized at HF/6-31+G\*\* theory level in Gaussian 16. The ESP charges were then calculated in Gaussian 16. The Cartesian coordinates and RESP charges were then calculated in SYBL Mol2 format using antechamber in AMBER 18. Carbon atoms are represented using green, nitrogen atoms using blue and hydrogen atoms using light grey.

#### **Docked structures of InqPr2 used for simulation**



**Figure S7.** Selected conformers for MD studies out of the 500 independent docked conformers generated with (A) *c-MYC*; and (B) *c-KIT1* G4 DNA in AutoDock 4.2.6.



#### Per-nucleotide RMSF values of InqPr2 with *c-MYC* and *c-KIT1*

**Figure S8.** Per-nucleotide RMSF values of (A) *c-MYC* DNA; and (B) *c-KIT1* G4 DNA. The graphs plotted are fluctuations of the nucleotides numbered from 5' to 3'.

Major electrostatic interactions of InqPr2 with c-MYC G4 DNA



**Figure S9**. The electrostatic interactions of **InqPr2** with *c-MYC* G4 residues. The interaction is represented with red dashed lines. The electrostatic interactions between (A) the N4 and OP2 of dT11; and (B) N4 and OP1 of dG13 are represented.

#### Major electrostatic interactions of InqPr2 with c-KIT1 G4 DNA



**Figure S10**. The electrostatic interactions of **InqPr2** with c-*KIT1* G4 residues. The interaction is represented with red dashed lines. The electrostatic interactions between (A) the N4 and OP1 of dG16; (B) N5 and OP1 of dG17 are represented.

## Orientation of InqPr2 with telomeric hybrid 2 G4 DNA



**Figure S11**. Reorientation of **InqPr2** during the simulation with telomeric hybrid DNA (PDB ID: 2JPZ). Frame at (A) 0.1 ns; (B) 100 ns; (C) 300 ns; and (D) 500 ns

#### **Orientation of InqPr2 with telomeric antiparallel G4 DNA**



**Figure S12.** Reorientation of **InqPr2** during the simulation with telomeric antiparallel DNA (PDB ID: 143D). Frame at (A) 100 ns; (B) 300 ns; (C) 400 ns; and (D) 500 ns

### Details of single crystal structure information of compound 4



ORTEP diagram of compound **4** with 50% ellipsoid probability (CCDC 2009565)

# Selected crystallographic data of compound 4

| Table S1 | Crystal | data an | d structure | refinement | data fo | or compound | 4 |
|----------|---------|---------|-------------|------------|---------|-------------|---|
|----------|---------|---------|-------------|------------|---------|-------------|---|

| Empirical formula     | $C_{95}H_{67}N_{12}$ |
|-----------------------|----------------------|
| Formula weight        | 1376.60              |
| Temperature/K         | 293(2)               |
| Crystal system        | triclinic            |
| Space group           | P-1                  |
| a/Å                   | 11.6632(4)           |
| b/Å                   | 12.5674(6)           |
| c/Å                   | 25.4481(9)           |
| $\alpha/^{\circ}$     | 100.530(3)           |
| $\beta^{\circ}$       | 90.315(3)            |
| $\gamma/^{\circ}$     | 99.551(3)            |
| Volume/Å <sup>3</sup> | 3614.0(3)            |
| Z                     | 2                    |
| $\rho_{calc}g/cm^3$   | 1.265                |
| $\mu/mm^{-1}$         | 0.076                |

| F(000)                                | 1442.0                                                   |
|---------------------------------------|----------------------------------------------------------|
| Crystal size/mm <sup>3</sup>          | $0.98 \times 0.68 \times 0.56$                           |
| Radiation                             | MoKα ( $\lambda = 0.71073$ )                             |
| $2\Theta$ range for data collection/° | 3.258 to 50                                              |
| Index ranges                          | $-13 \le h \le 13,  -14 \le k \le 14,  -30 \le l \le 30$ |
| Reflections collected                 | 72755                                                    |
| Independent reflections               | 12709 [ $R_{int} = 0.1453$ , $R_{sigma} = 0.1062$ ]      |
| Data/restraints/parameters            | 12709/933/965                                            |
| Goodness-of-fit on F <sup>2</sup>     | 1.025                                                    |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0904, wR_2 = 0.2322$                            |
| Final R indexes [all data]            | $R_1 = 0.1479, wR_2 = 0.3026$                            |
| Largest diff. peak/hole / e Å $^{-3}$ | 0.45/-0.46                                               |

# Bond lengths [Å] and angles [°] for Compound 4

 Table S2. Bond lengths and bond parameters for compound 4

| Bond Lengths (Å) |      |          |      |      |          |  |  |
|------------------|------|----------|------|------|----------|--|--|
| Atom             | Atom | Length/Å | Atom | Atom | Length/Å |  |  |
| N8               | C56  | 1.383(5) | C12  | C13  | 1.381(6) |  |  |
| N8               | C48  | 1.376(5) | C12  | C11  | 1.392(6) |  |  |
| N4               | C24  | 1.323(5) | C35  | C36  | 1.381(6) |  |  |
| N4               | C28  | 1.360(5) | C6   | C7   | 1.368(6) |  |  |
| N1               | C5   | 1.371(5) | C60  | C61  | 1.399(6) |  |  |
| N1               | C1   | 1.333(5) | C27  | C26  | 1.427(6) |  |  |
| N5               | C33  | 1.385(5) | C27  | C28  | 1.443(6) |  |  |
| N5               | C25  | 1.379(5) | C25  | C26  | 1.372(6) |  |  |
| N2               | C2   | 1.380(5) | C17  | C18  | 1.443(6) |  |  |
| N2               | C10  | 1.375(5) | C17  | C16  | 1.368(6) |  |  |
| N10              | C70  | 1.318(5) | C26  | C40  | 1.487(5) |  |  |
| N10              | C74  | 1.373(5) | C37  | C38  | 1.373(6) |  |  |
| N7               | C47  | 1.331(5) | C37  | C36  | 1.404(6) |  |  |
| N7               | C51  | 1.370(5) | C18  | C23  | 1.432(6) |  |  |

| N11 | C79 | 1.384(5) | C18 | C19 | 1.397(6) |
|-----|-----|----------|-----|-----|----------|
| N11 | C71 | 1.382(5) | C64 | C63 | 1.448(6) |
| N9  | C62 | 1.361(5) | C64 | C69 | 1.405(6) |
| N9  | C69 | 1.373(6) | C64 | C65 | 1.399(6) |
| N3  | C23 | 1.364(6) | C72 | C73 | 1.428(6) |
| N3  | C16 | 1.367(5) | C72 | C71 | 1.374(6) |
| N6  | C39 | 1.372(5) | C72 | C86 | 1.490(6) |
| N6  | C42 | 1.375(6) | C81 | C80 | 1.391(6) |
| N12 | C85 | 1.370(6) | C81 | C82 | 1.370(6) |
| N12 | C88 | 1.389(6) | C52 | C51 | 1.412(6) |
| C4  | C5  | 1.421(6) | C52 | C53 | 1.358(6) |
| C4  | C9  | 1.411(6) | C62 | C63 | 1.366(6) |
| C4  | C3  | 1.433(6) | C8  | C7  | 1.396(6) |
| C24 | C34 | 1.449(6) | C73 | C74 | 1.429(6) |
| C24 | C25 | 1.439(5) | C73 | C78 | 1.421(6) |
| C70 | C80 | 1.451(6) | C69 | C68 | 1.374(6) |
| C70 | C71 | 1.431(6) | C74 | C75 | 1.428(6) |
| C2  | C1  | 1.429(6) | C23 | C22 | 1.401(6) |
| C2  | C3  | 1.370(6) | C78 | C77 | 1.369(6) |
| C33 | C34 | 1.406(6) | C46 | C45 | 1.386(6) |
| C33 | C38 | 1.403(6) | C77 | C76 | 1.398(6) |
| C5  | C6  | 1.408(6) | C84 | C83 | 1.370(6) |
| C9  | C8  | 1.369(6) | C76 | C75 | 1.358(6) |
| C34 | C35 | 1.390(5) | C65 | C66 | 1.380(6) |
| C10 | C15 | 1.391(6) | C54 | C53 | 1.412(7) |
| C10 | C11 | 1.415(6) | C28 | C29 | 1.419(6) |
| C1  | C11 | 1.438(6) | C87 | C86 | 1.441(6) |
| C50 | C49 | 1.421(6) | C87 | C88 | 1.407(6) |
| C50 | C55 | 1.423(6) | C87 | C92 | 1.388(6) |
| C50 | C51 | 1.441(6) | C40 | C39 | 1.381(6) |
| C3  | C17 | 1.480(6) | C85 | C86 | 1.374(6) |
| C15 | C14 | 1.386(6) | C29 | C30 | 1.342(6) |
| C59 | C58 | 1.394(6) | C82 | C83 | 1.419(7) |
| C59 | C60 | 1.390(6) | C30 | C31 | 1.412(6) |

| Page | S21 |
|------|-----|
|------|-----|

| C49 | C48 | 1.385(6) | C42 | C43              | 1.400(6)  |
|-----|-----|----------|-----|------------------|-----------|
| C49 | C63 | 1.471(6) | C68 | C67              | 1.383(7)  |
| C58 | C57 | 1.393(6) | C88 | C89              | 1.386(6)  |
| C55 | C54 | 1.366(6) | C22 | C21              | 1.352(8)  |
| C14 | C13 | 1.403(6) | C19 | C20              | 1.376(7)  |
| C79 | C80 | 1.406(6) | C44 | C45              | 1.388(7)  |
| C79 | C84 | 1.389(6) | C44 | C43              | 1.356(7)  |
| C47 | C48 | 1.431(6) | C89 | C90              | 1.373(7)  |
| C47 | C57 | 1.445(6) | C66 | C67              | 1.393(7)  |
| C56 | C61 | 1.392(6) | C92 | C91              | 1.383(7)  |
| C56 | C57 | 1.400(6) | C90 | C91              | 1.403(7)  |
| C32 | C27 | 1.418(6) | C21 | C20              | 1.421(7)  |
| C32 | C31 | 1.361(6) | C93 | C93 <sup>1</sup> | 1.530(11) |
| C41 | C46 | 1.387(6) | C93 | C94              | 1.521(8)  |
| C41 | C40 | 1.448(6) | C94 | C95              | 1.500(8)  |
| C41 | C42 | 1.410(6) |     |                  |           |

Bond Angles (°)

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°  |
|------|------|------|----------|------|------|------|----------|
| C48  | N8   | C56  | 108.8(3) | C19  | C18  | C23  | 118.8(4) |
| C24  | N4   | C28  | 115.7(4) | C69  | C64  | C63  | 106.9(4) |
| C1   | N1   | C5   | 115.4(3) | C65  | C64  | C63  | 134.1(4) |
| C25  | N5   | C33  | 109.0(3) | C65  | C64  | C69  | 119.0(4) |
| C10  | N2   | C2   | 109.3(3) | C73  | C72  | C86  | 123.7(4) |
| C70  | N10  | C74  | 114.9(4) | C71  | C72  | C73  | 115.4(4) |
| C47  | N7   | C51  | 116.5(4) | C71  | C72  | C86  | 120.9(4) |
| C71  | N11  | C79  | 108.7(3) | C82  | C81  | C80  | 119.7(4) |
| C62  | N9   | C69  | 109.4(4) | C37  | C38  | C33  | 117.6(4) |
| C23  | N3   | C16  | 109.3(4) | C53  | C52  | C51  | 121.5(4) |
| C39  | N6   | C42  | 109.6(4) | N9   | C62  | C63  | 110.3(4) |
| C85  | N12  | C88  | 109.1(4) | C79  | C80  | C70  | 106.1(4) |
| C5   | C4   | C3   | 119.5(4) | C81  | C80  | C70  | 133.9(4) |
| C9   | C4   | C5   | 117.7(4) | C81  | C80  | C79  | 119.9(4) |
| C9   | C4   | C3   | 122.7(4) | N7   | C51  | C50  | 122.8(4) |

| N4  | C24 | C34 | 128.6(4) | N7  | C51 | C52 | 118.0(4) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| N4  | C24 | C25 | 124.7(4) | C52 | C51 | C50 | 119.3(4) |
| C25 | C24 | C34 | 106.7(4) | C56 | C61 | C60 | 117.0(4) |
| N10 | C70 | C80 | 128.4(4) | C64 | C63 | C49 | 128.3(4) |
| N10 | C70 | C71 | 125.1(4) | C62 | C63 | C49 | 125.7(4) |
| C71 | C70 | C80 | 106.5(3) | C62 | C63 | C64 | 105.9(4) |
| N2  | C2  | C1  | 108.1(4) | C9  | C8  | C7  | 120.4(4) |
| C3  | C2  | N2  | 130.9(4) | C72 | C73 | C74 | 119.5(4) |
| C3  | C2  | C1  | 120.9(4) | C78 | C73 | C72 | 123.1(4) |
| N5  | C33 | C34 | 110.0(4) | C78 | C73 | C74 | 117.3(4) |
| N5  | C33 | C38 | 129.2(4) | N9  | C69 | C64 | 107.4(4) |
| C38 | C33 | C34 | 120.8(4) | N9  | C69 | C68 | 129.9(4) |
| N1  | C5  | C4  | 123.7(4) | C68 | C69 | C64 | 122.7(4) |
| N1  | C5  | C6  | 116.7(4) | N10 | C74 | C73 | 123.9(4) |
| C6  | C5  | C4  | 119.5(4) | N10 | C74 | C75 | 116.8(4) |
| C8  | C9  | C4  | 121.4(4) | C75 | C74 | C73 | 119.3(4) |
| C33 | C34 | C24 | 106.1(3) | N3  | C23 | C18 | 107.7(4) |
| C35 | C34 | C24 | 133.2(4) | N3  | C23 | C22 | 130.6(4) |
| C35 | C34 | C33 | 120.7(4) | C22 | C23 | C18 | 121.6(5) |
| N2  | C10 | C15 | 128.9(4) | C77 | C78 | C73 | 121.6(4) |
| N2  | C10 | C11 | 109.5(4) | C45 | C46 | C41 | 118.7(4) |
| C15 | C10 | C11 | 121.5(4) | N11 | C71 | C70 | 108.6(4) |
| N1  | C1  | C2  | 124.6(4) | C72 | C71 | N11 | 130.3(4) |
| N1  | C1  | C11 | 128.4(4) | C72 | C71 | C70 | 121.1(4) |
| C2  | C1  | C11 | 107.0(3) | C78 | C77 | C76 | 120.5(4) |
| C49 | C50 | C55 | 123.1(4) | C83 | C84 | C79 | 118.2(4) |
| C49 | C50 | C51 | 119.9(4) | C6  | C7  | C8  | 119.9(4) |
| C55 | C50 | C51 | 117.0(4) | C75 | C76 | C77 | 120.3(4) |
| C4  | C3  | C17 | 122.7(4) | C66 | C65 | C64 | 118.2(5) |
| C2  | C3  | C4  | 115.9(4) | C55 | C54 | C53 | 119.8(4) |
| C2  | C3  | C17 | 121.3(4) | N4  | C28 | C27 | 123.8(4) |
| C14 | C15 | C10 | 117.6(4) | N4  | C28 | C29 | 117.9(4) |
| C60 | C59 | C58 | 120.4(4) | C29 | C28 | C27 | 118.3(4) |
| C50 | C49 | C63 | 123.2(4) | C88 | C87 | C86 | 107.1(4) |

| C48 | C49 | C50 | 115.8(4) | C92 | C87 | C86 | 135.0(4) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C48 | C49 | C63 | 121.0(4) | C92 | C87 | C88 | 117.8(4) |
| C57 | C58 | C59 | 118.3(4) | C41 | C40 | C26 | 129.6(4) |
| C54 | C55 | C50 | 122.2(4) | C39 | C40 | C41 | 106.5(4) |
| C15 | C14 | C13 | 121.4(4) | C39 | C40 | C26 | 123.7(4) |
| N11 | C79 | C80 | 110.0(4) | N3  | C16 | C17 | 110.4(4) |
| N11 | C79 | C84 | 129.0(4) | N12 | C85 | C86 | 109.8(4) |
| C84 | C79 | C80 | 121.0(4) | C30 | C29 | C28 | 121.6(4) |
| N7  | C47 | C48 | 124.0(4) | C58 | C57 | C47 | 133.0(4) |
| N7  | C47 | C57 | 129.4(4) | C58 | C57 | C56 | 120.8(4) |
| C48 | C47 | C57 | 106.6(3) | C56 | C57 | C47 | 106.1(4) |
| N8  | C56 | C61 | 128.5(4) | C87 | C86 | C72 | 129.2(4) |
| N8  | C56 | C57 | 110.1(4) | C85 | C86 | C72 | 124.1(4) |
| C61 | C56 | C57 | 121.4(4) | C85 | C86 | C87 | 106.6(4) |
| C31 | C32 | C27 | 121.3(4) | N6  | C39 | C40 | 109.4(4) |
| C46 | C41 | C40 | 134.5(4) | C81 | C82 | C83 | 119.7(4) |
| C46 | C41 | C42 | 118.9(4) | C84 | C83 | C82 | 121.6(4) |
| C42 | C41 | C40 | 106.6(4) | C35 | C36 | C37 | 120.7(4) |
| C13 | C12 | C11 | 118.9(4) | C29 | C30 | C31 | 120.6(4) |
| C12 | C13 | C14 | 120.8(4) | C32 | C31 | C30 | 120.2(4) |
| C36 | C35 | C34 | 118.3(4) | N6  | C42 | C41 | 107.9(4) |
| C7  | C6  | C5  | 120.9(4) | N6  | C42 | C43 | 130.1(4) |
| C59 | C60 | C61 | 122.1(4) | C43 | C42 | C41 | 122.0(5) |
| C32 | C27 | C26 | 123.3(4) | C76 | C75 | C74 | 120.8(4) |
| C32 | C27 | C28 | 117.9(4) | C69 | C68 | C67 | 117.7(5) |
| C26 | C27 | C28 | 118.8(4) | N12 | C88 | C87 | 107.3(4) |
| N5  | C25 | C24 | 108.2(3) | C89 | C88 | N12 | 129.0(4) |
| C26 | C25 | N5  | 131.4(4) | C89 | C88 | C87 | 123.6(5) |
| C26 | C25 | C24 | 120.4(4) | C52 | C53 | C54 | 120.3(4) |
| C18 | C17 | C3  | 128.5(4) | C21 | C22 | C23 | 117.5(5) |
| C16 | C17 | C3  | 124.9(4) | C20 | C19 | C18 | 119.2(5) |
| C16 | C17 | C18 | 106.6(4) | C43 | C44 | C45 | 121.8(5) |
| C10 | C11 | C1  | 106.1(3) | C90 | C89 | C88 | 116.5(5) |
| C12 | C11 | C10 | 119.8(4) | C65 | C66 | C67 | 121.8(5) |

| Page | S24 |
|------|-----|
|------|-----|

| C12 | C11 | C1  | 134.1(4) | C46 | C45 | C44              | 121.2(5) |
|-----|-----|-----|----------|-----|-----|------------------|----------|
| N8  | C48 | C49 | 130.5(4) | C44 | C43 | C42              | 117.4(5) |
| N8  | C48 | C47 | 108.4(4) | C91 | C92 | C87              | 120.0(5) |
| C49 | C48 | C47 | 121.1(4) | C89 | C90 | C91              | 122.1(5) |
| C27 | C26 | C40 | 123.1(4) | C92 | C91 | C90              | 120.0(5) |
| C25 | C26 | C27 | 116.5(4) | C68 | C67 | C66              | 120.7(5) |
| C25 | C26 | C40 | 120.4(4) | C22 | C21 | C20              | 122.4(5) |
| C38 | C37 | C36 | 121.8(4) | C19 | C20 | C21              | 120.4(5) |
| C23 | C18 | C17 | 106.0(4) | C94 | C93 | C93 <sup>1</sup> | 115.8(6) |
| C19 | C18 | C17 | 135.2(4) | C95 | C94 | C93              | 113.1(5) |

#### Details of single crystal structure information of InqPr1



ORTEP diagram and structure of the alkylated product **InqPr1** (CCDC 2113444)

#### Selected crystallographic data of InqPr1

| Table S3. | Crystal | data and | structure | refinement | data | for | InqPr1 |
|-----------|---------|----------|-----------|------------|------|-----|--------|
|-----------|---------|----------|-----------|------------|------|-----|--------|

| Empirical formula | $C_{33}H_{43}Cl_3N_5O_2$ |
|-------------------|--------------------------|
| Formula weight    | 648.07                   |
| Temperature/K     | 150.00                   |
| Crystal system    | triclinic                |
| Space group       | P-1                      |
| a/Å               | 10.7323(4)               |
| b/Å               | 11.1110(6)               |

| c/Å                                         | 16.7890(9)                      |
|---------------------------------------------|---------------------------------|
| α/°                                         | 76.812(4)                       |
| β/°                                         | 76.009(4)                       |
| γ/°                                         | 64.298(4)                       |
| Volume/Å <sup>3</sup>                       | 1732.95(16)                     |
| Z                                           | 2                               |
| $ ho_{calc}g/cm^3$                          | 1.242                           |
| µ/mm <sup>-1</sup>                          | 2.676                           |
| F(000)                                      | 686.0                           |
| Crystal size/mm <sup>3</sup>                | $0.21 \times 0.135 \times 0.12$ |
| Radiation                                   | $CuK\alpha (\lambda = 1.54184)$ |
| $2\Theta$ range for data collection/°       | 5.48 to 145.602                 |
| Reflections collected                       | 20518                           |
| Independent reflections                     | 6676 [ $R_{int} = 0.0940$ ]     |
| Data/restraints/parameters                  | 6676/0/398                      |
| Goodness-of-fit on F <sup>2</sup>           | 1.169                           |
| $R_{I}$                                     | 0.0911                          |
| $wR_2$                                      | 0.3055                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.98/-1.05                      |
|                                             |                                 |

| Table 54. Bond lengths and bond parameters for <b>inqr1</b> |      |          |      |      |          |  |
|-------------------------------------------------------------|------|----------|------|------|----------|--|
| Bond Lengths (Å)                                            |      |          |      |      |          |  |
| Atom                                                        | Atom | Length/Å | Atom | Atom | Length/Å |  |
| N1                                                          | C8   | 1.379(4) | C6   | C7   | 1.414(5) |  |
| N1                                                          | C7   | 1.332(4) | C6   | C1   | 1.414(5) |  |
| N3                                                          | C18  | 1.376(4) | C6   | C36  | 1.406(5) |  |
| N3                                                          | C17  | 1.381(4) | N5   | C31  | 1.484(5) |  |
| N3                                                          | C24  | 1.457(4) | N5   | C33  | 1.494(5) |  |
| N2                                                          | C15  | 1.391(5) | N5   | C32  | 1.475(6) |  |
| N2                                                          | C1   | 1.400(5) | C22  | C21  | 1.380(5) |  |
| N2                                                          | C29  | 1.461(4) | C17  | C16  | 1.377(4) |  |
| N4                                                          | C28  | 1.487(4) | C14  | C16  | 1.469(4) |  |
| N4                                                          | C26  | 1.499(5) | C1   | C2   | 1.389(6) |  |
| N4                                                          | C27  | 1.480(5) | C20  | C21  | 1.404(5) |  |
| C18                                                         | C23  | 1.418(4) | C9   | C10  | 1.369(6) |  |
| C18                                                         | C19  | 1.397(5) | C25  | C24  | 1.526(5) |  |
| C15                                                         | C7   | 1.430(4) | C25  | C26  | 1.524(4) |  |
| C15                                                         | C14  | 1.388(5) | C29  | C30  | 1.516(5) |  |
| C23                                                         | C22  | 1.396(4) | C36  | C4   | 1.372(6) |  |
| C23                                                         | C16  | 1.443(4) | C12  | C11  | 1.358(6) |  |
| C13                                                         | C8   | 1.423(4) | C2   | C3   | 1.394(6) |  |
| C13                                                         | C14  | 1.423(5) | C4   | C3   | 1.409(6) |  |
| C13                                                         | C12  | 1.433(5) | C30  | C31  | 1.541(5) |  |
| C8                                                          | C9   | 1.403(5) | C10  | C11  | 1.403(6) |  |
| C19                                                         | C20  | 1.386(5) |      |      |          |  |

# Bond lengths [Å] and angles [°] for InqPr1

 Table S4. Bond lengths and bond parameters for InqPr1

| Bond Angles (°) |      |      |          |      |      |      |          |
|-----------------|------|------|----------|------|------|------|----------|
| Atom            | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°  |
| C7              | N1   | C8   | 120.6(3) | C32  | N5   | C33  | 109.9(4) |
| C18             | N3   | C17  | 108.9(2) | C21  | C22  | C23  | 118.6(3) |
| C18             | N3   | C24  | 125.1(3) | N1   | C7   | C15  | 121.5(3) |
| C17             | N3   | C24  | 125.6(3) | N1   | C7   | C6   | 129.6(3) |

| C15 | N2  | C1  | 108.0(3) | C6  | C7  | C15 | 109.0(3) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C15 | N2  | C29 | 127.6(3) | C16 | C17 | N3  | 110.1(3) |
| C1  | N2  | C29 | 121.5(3) | C15 | C14 | C13 | 116.3(3) |
| C28 | N4  | C26 | 110.2(3) | C15 | C14 | C16 | 124.0(3) |
| C27 | N4  | C28 | 110.5(3) | C13 | C14 | C16 | 119.3(3) |
| C27 | N4  | C26 | 112.8(3) | N2  | C1  | C6  | 110.0(3) |
| N3  | C18 | C23 | 107.7(3) | C2  | C1  | N2  | 128.6(3) |
| N3  | C18 | C19 | 130.0(3) | C2  | C1  | C6  | 121.4(3) |
| C19 | C18 | C23 | 122.3(3) | C19 | C20 | C21 | 121.4(3) |
| N2  | C15 | C7  | 107.4(3) | C23 | C16 | C14 | 123.7(3) |
| C14 | C15 | N2  | 131.7(3) | C17 | C16 | C23 | 106.3(3) |
| C14 | C15 | C7  | 120.8(3) | C17 | C16 | C14 | 129.4(3) |
| C18 | C23 | C16 | 107.0(3) | C10 | C9  | C8  | 119.1(3) |
| C22 | C23 | C18 | 119.3(3) | C26 | C25 | C24 | 109.1(3) |
| C22 | C23 | C16 | 133.6(3) | N3  | C24 | C25 | 110.4(3) |
| C8  | C13 | C12 | 115.9(3) | N2  | C29 | C30 | 114.0(3) |
| C14 | C13 | C8  | 121.4(3) | C22 | C21 | C20 | 121.5(3) |
| C14 | C13 | C12 | 122.5(3) | C4  | C36 | C6  | 118.4(3) |
| N1  | C8  | C13 | 119.1(3) | C11 | C12 | C13 | 121.1(3) |
| N1  | C8  | C9  | 118.5(3) | N4  | C26 | C25 | 111.4(3) |
| C9  | C8  | C13 | 122.3(3) | C1  | C2  | C3  | 117.0(4) |
| C20 | C19 | C18 | 117.0(3) | C36 | C4  | C3  | 120.5(4) |
| C1  | C6  | C7  | 105.6(3) | C29 | C30 | C31 | 109.0(3) |
| C36 | C6  | C7  | 133.9(3) | N5  | C31 | C30 | 111.5(3) |
| C36 | C6  | C1  | 120.5(3) | C2  | C3  | C4  | 122.3(4) |
| C31 | N5  | C33 | 112.0(3) | C9  | C10 | C11 | 120.3(4) |
| C32 | N5  | C31 | 111.8(3) | C12 | C11 | C10 | 121.3(4) |
|     |     |     |          |     |     |     |          |

| Table S5. DNA sequences        | Table S5. DNA sequences used for the experiments in 5' to 3' direction |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------|--|--|--|--|
| DNA                            | Sequence                                                               |  |  |  |  |
| Telomeric DNA                  | 5'-AGGGTTAGGGTTAGGGTTAGGG-3'                                           |  |  |  |  |
| <i>c-MYC</i> DNA               | 5'-TGAGGGTGGGTAGGGTGGGTAA-3'                                           |  |  |  |  |
| <i>c-KIT1</i> DNA              | 5'-GGGAGGGCGCTGGGAGGAGGG-3'                                            |  |  |  |  |
| <i>h-RAS</i> DNA               | 5'- TCGGGTTGCGGGCGCAGGGCACGGGCG -3'                                    |  |  |  |  |
| Duplex-17 (DS17)               | 5'-CCAGTTCGTAGTAACCC-3'                                                |  |  |  |  |
|                                | 5'-GGGTTACTA CGAACTGG-3'                                               |  |  |  |  |
| Primer for stop assay          | 5'-ACGACTCACTATAGCAATTGCG-3'                                           |  |  |  |  |
| Template of <i>c-MYC</i>       | 5'-TGAGGGTGGGTAGGGTGGGTAAGCCACCGCAATT                                  |  |  |  |  |
| DNA                            | GCTATAGTGAGTCGT-3'                                                     |  |  |  |  |
| Template of mutated <i>c</i> - | 5'-TGAGGGTGGGTAGAGTGGGTAAGCCACCGCAATT                                  |  |  |  |  |
| MYC DNA                        | GCTATAGTGAGTCGT-3'                                                     |  |  |  |  |
| Template of telomeric          | 5'-AGGGTTAGGGTTAGGGGTTAGGGGCCACCGCAATT                                 |  |  |  |  |
| DNA                            | GCTATAGTGAGTCGT-3'                                                     |  |  |  |  |

# Oligonucleotides used for various biophysical and biochemical experiments

## **Primers used for qRT-PCR experiments**

| Table S6. List of primers used for the qRT-PCR experiments in 5' to 3' direction |                                 |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Description                                                                      | Sequence                        |  |  |  |
| <i>c-MYC</i> forward primer                                                      | 5'-TGAGGAGACACCGCCCAC-3'        |  |  |  |
| <i>c-MYC</i> reverse primer                                                      | 5'-CAACATCGATTTCTTCCTCATCTTC-3' |  |  |  |
| <i>c-KIT</i> forward primer                                                      | 5'-CGTGGAAAAGAGAAAACAGTCA-3'    |  |  |  |
| <i>c-KIT</i> reverse primer                                                      | 5'-CACCGTGATGCCAGCTATTA-3'      |  |  |  |
| $\beta$ -actin forward primer                                                    | 5'-TGCGTGACATTAAGGAGAA-3'       |  |  |  |
| $\beta$ -actin reverse primer                                                    | 5'-CTGCATCCTGTCGGCAATG-3'       |  |  |  |

# Average distances and percentage occupancies of major electrostatic interaction of InqPr2 with c-MYC and c-KIT1 G4 DNAs

| DNA    | Residue-<br>interacting atom | Protonated nitrogen of the ligand | Percentage occupancy | Average<br>distance<br>(Å) |
|--------|------------------------------|-----------------------------------|----------------------|----------------------------|
| c-MYC  | dT11-OP2                     | N4 of the ligand at the 3'-end    | 91.3                 | 3.5                        |
|        | dG13-OP1                     | N4 of the ligand at the 5'-end    | 52.5                 | 7.1                        |
| c-KIT1 | dG16-OP1                     | N4 of the ligand at the 3'-end    | 44.2                 | 5.5                        |
|        | dG17-OP1                     | N5 of the ligand at the 3'-end    | 55.3                 | 5.1                        |
|        | dG17-OP2                     | N4 of the ligand at the 3'-end    | 35                   | 5.9                        |

Table S7. Average distances and percentages of major electrostatic interactions

The distances were calculated using CPPTRAJ module of AMBER 18. All the distances between the protonated nitrogen and the backbone atoms of G4 below 5.0 Å were considered. Percentage occupancies when the distance is less than 5.0 Å are mentioned. The average distance represents the distance during the whole 500 ns trajectory.

| <b>Table S8.</b> Binding free energy components of c-MYC G4 DNA and InqPr2 complex |                     |                     |                      |  |  |
|------------------------------------------------------------------------------------|---------------------|---------------------|----------------------|--|--|
|                                                                                    | 5'-quartet bound    | 3'-quartet bound    | Dual bound           |  |  |
| $\Delta E_{ELEC}$                                                                  | $-829.95 \pm 26.33$ | $-850.80 \pm 20.70$ | $-1680.75 \pm 31.92$ |  |  |
| $\Delta E_{VDW}$                                                                   | $-45.95\pm5.05$     | $-47.23 \pm 3.63$   | $-93.18\pm5.64$      |  |  |
| $\Delta E_{MM} (\Delta E_{ELEC} + \Delta E_{VDW})$                                 | $-875.39 \pm 28.06$ | $-897.51 \pm 22.48$ | $-1773.93 \pm 33.96$ |  |  |
| $\Delta PB_{np}$                                                                   | $-3.50\pm0.35$      | $-4.02\pm0.23$      | $-7.51 \pm 0.41$     |  |  |
| $\Delta PB_{cal}$                                                                  | $842.29\pm27.82$    | $860.90\pm21.10$    | $1702.76 \pm 33.28$  |  |  |
| $\Delta PB_{solv}(\Delta PB_{np} + \Delta PB_{cal})$                               | $838.79\pm27.74$    | $856.89\pm20.95$    | $1695.24 \pm 33.19$  |  |  |
| $\Delta H_{\rm PB}(\Delta E_{\rm MM} + \Delta PB_{\rm solv})$                      | $-36.59\pm5.04$     | $-40.62\pm4.94$     | $-78.69 \pm 6.89$    |  |  |
| $\Delta \mathbf{T} \Delta S$                                                       | $-18.80\pm5.92$     | $-19.53\pm6.14$     | $-31.36\pm7.85$      |  |  |
| $\Delta G(\Delta H_{PB} - T\Delta S)$                                              | $-17.80\pm7.82$     | $-21.09\pm7.77$     | $-47.33 \pm 10.89$   |  |  |

# Binding free energy values of InqPr2 with *c-MYC* G4 DNA

Binding free energy components have been calculated from the last 20 ns of the 500 ns simulation by considering every 5<sup>th</sup> frame from a total of 2000 frames. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis.  $\Delta E_{ELEC}$  is the electrostatic contribution.  $\Delta E_{VDW}$  is the Vander Waals contribution.  $\Delta E_{MM}$  is the total molecular mechanical energy.  $\Delta PB_{np}$  is the non-polar contribution to the solvation energy.  $\Delta PB_{cal}$  is the electrostatic contribution to the solvation energy.  $\Delta PB_{solv}$  is the total solvation energy.  $T\Delta S$  is the solute entropic contributions.  $\Delta G (\Delta H - T \Delta S)$  is the estimated binding free energy. All the values are reported in kcal  $mol^{-1}$ . For nmode analysis parameters used were: drms = 0.5; dielec (distance dependent dielec) = 4; maxcyc = 10,000 and AMBER prescribed default values were used for PB calculations

| <b>Table S9.</b> Binding free energy components of c-KIT1 G4 DNA and InqPr2 complex |                     |                      |                      |  |  |
|-------------------------------------------------------------------------------------|---------------------|----------------------|----------------------|--|--|
|                                                                                     | 5'-quartet bound    | 3'-quartet bound     | Dual bound           |  |  |
| $\Delta E_{ELEC}$                                                                   | $-677.39 \pm 30.89$ | $-945.09 \pm 20.19$  | $-1622.48 \pm 36.82$ |  |  |
| $\Delta E_{VDW}$                                                                    | $-34.69\pm4.94$     | $-57.65 \pm 3.72$    | $-92.35 \pm 5.94$    |  |  |
| $\Delta E_{MM} (\Delta E_{ELEC} + \Delta E_{VDW})$                                  | $-711.57 \pm 34.47$ | $-1002.23 \pm 20.98$ | $-1714.83 \pm 39.92$ |  |  |
| $\Delta PB_{np}$                                                                    | $-2.94\pm0.32$      | $-4.40\pm0.19$       | $-7.34\pm0.36$       |  |  |
| $\Delta PB_{cal}$                                                                   | $685.79\pm32.28$    | $947.65\pm20.10$     | $1633.29\pm37.71$    |  |  |
| $\Delta PB_{solv}(\Delta PB_{np} + \Delta PB_{cal})$                                | $682.85\pm32.02$    | $943.24\pm19.99$     | $1625.94 \pm 37.46$  |  |  |
| $\Delta H_{\rm PB}(\Delta E_{\rm MM} + \Delta PB_{\rm solv})$                       | $-28.72\pm4.29$     | $-58.99 \pm 4.54$    | $-88.88\pm6.09$      |  |  |
| $\Delta T \Delta S$                                                                 | $-17.81 \pm 5.66$   | $-22.04 \pm 5.56$    | $-34.39\pm6.90$      |  |  |
| $\Delta G(\Delta H_{\rm PB} - T\Delta S)$                                           | $-10.91 \pm 6.36$   | $-36.94 \pm 7.27$    | $-54.50\pm8.97$      |  |  |

#### Binding free energy values of InqPr2 with c-KIT1 G4 DNA

Binding free energy components have been calculated from the last 20 ns of the 500 ns simulation by considering every 5<sup>th</sup> frame from a total of 2000 frames. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis.  $\Delta E_{ELEC}$  is the electrostatic contribution.  $\Delta E_{VDW}$  is the Vander Waals contribution.  $\Delta E_{MM}$  is the total molecular mechanical energy.  $\Delta PB_{np}$  is the non-polar contribution to the solvation energy.  $\Delta PB_{cal}$  is the electrostatic contribution to the solvation energy.  $\Delta PB_{solv}$  is the total solvation energy.  $T\Delta S$  is the solute entropic contributions.  $\Delta G (\Delta H - T\Delta S)$  is the estimated binding free energy. All the values are reported in kcal mol<sup>-1</sup>. For nmode analysis parameters used were: drms = 0.5; dielec (distance dependent dielec) = 4; maxcyc = 10,000 and AMBER prescribed default values were used for PB calculations



# <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 3, (G: Grease, I: Impurity)

# <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 4



# <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound InqEt1



<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound InqEt2



# <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 5

#### 





### <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound InqPr1



# <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound InqPr2

8.65 8.65 8.65 8.63 8.63 8.63 8.63 8.65 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.757



## HRMS spectra of compound 3

#

1

Meas. m/z

390.1213

Ion Formula

C23H17N3NaO2

m/z

390.1213

err [ppm]

-0.1

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)



mSigma

13.5

# mSigma

1

Score

100.00

rdb

17.0

e<sup>-</sup>Conf

even

N-Rule

ok

## HRMS spectra of compound 4

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)

#### Analysis Info

| Analysis Info |                                       | Acquisition D | Date 1             | 0/25/201 | 8 2:55:52 AM |
|---------------|---------------------------------------|---------------|--------------------|----------|--------------|
| Analysis Name | D:\Data\backup_PPI\PK-SP-CRPT-CORE@.d |               |                    |          |              |
| Method        | Tune_pos_NAF-1500A.m                  | Operator      | PPIOU <sup>®</sup> | Г        |              |
| Sample Name   | PK-SP-CRPT-CORE@                      | Instrument    | maXis i            | mpact    | 282001.00081 |
| Comment       | C23H15N3                              |               |                    |          |              |

#### Acquisition Parameter



### HRMS spectra of InEt1

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)

#### Analysis Info Acquisition Date 11/20/2017 10:22:12 AM D:\Data\backup\_PPI\PK-SP-CR-PY-1@.d Analysis Name Method Tune\_pos\_NAF-1000A.m KPK OUT Operator PK-SP-CR-PY-1@ Sample Name Instrument maXis impact 282001.00081 Comment C30H40O5Si **Acquisition Parameter** Source Type ESI Ion Polarity Positive Set Nebulizer 0.5 Bar Active 50 m/z Set Capillary Set End Plate Offset Set Dry Heater Set Dry Gas 180 °C 4.0 l/min Focus Scan Begin 3700 V -500 V Scan End 1000 m/z Set Charging Voltage 2000 V Set Divert Valve Source Set Corona 0 nA Set APCI Heater 0 °C Intens. PK-SP-CR-PY-1@.d: +MS, 0.10-0.17min #6-10 x10<sup>5</sup> 431.2231 4 2 334.1332 493.1436 923.3585 0. 100 200 300 400 500 600 700 800 900 m/z Intens. PK-SP-CR-PY-1@.d: +MS, 0.0min #2 x10<sup>5</sup>



#### HRMS spectra of InEt2

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)



#### Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 0.3 Bar Focus Scan Begin Set Capillary Set End Plate Offset 3700 V -500 V Set Dry Heater Set Dry Gas 180 °C 4.0 l/min Not active 50 m/z 1000 m/z 2000 V Set Divert Valve Scan End Set Charging Voltage Source Set APCI Heater 0 °C Set Corona 0 nA Intens. PK-SS-InqEtPy2 final.d: +MS, 0.2-0.3min #9-16 x10<sup>6</sup> 528.3122 4 2 625.3848 0. 100 200 300 400 500 700 600 800 900 m/z Intens. x10<sup>6</sup> PK-SS-IngEtPy2 final.d: +MS, 0.2-0.3min #9-16 528.3122 4 3 2 1 542.2821 0 505 510 515 520 525 530 535 540 545 m/z Meas. m/z # Ion Formula m/z err [ppm] mSigma # mSigma Score rdb e<sup>-</sup>Conf N-Rule 528.3122 C35H38N5 1 528.3122 -0.1 31.4 100.00 20.0 1 even ok

## HRMS spectra of compound 5

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)

| Analysis Info |                                       | Acquisition [ | Date 10/25/2 | 2018 2:13:19 AM |
|---------------|---------------------------------------|---------------|--------------|-----------------|
| Analysis Name | D:\Data\backup_PPI\PK-SP-CRPT-PRBR2.d |               |              |                 |
| Method        | Tune_pos_NAF-1500A.m                  | Operator      | PPIOUT       |                 |
| Sample Name   | PK-SP-CRPT-PRBR2                      | Instrument    | maXis impac  | t 282001.00081  |
| Comment       | C37H41N5                              |               |              |                 |
|               |                                       |               |              |                 |



# HRMS spectra of InqPr1

### DEPARTMENT OF CHEMISTRY, I.I.T.(B)

#### Analysis Info

| Analysis Info                                  | н                                      |                                                   |                                                                         |                                                   | Acc                      | quisition I          | Date 7                                                         | 7/8/2022 1                            | 10:04:18 F                                       | M        |  |  |
|------------------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|--------------------------|----------------------|----------------------------------------------------------------|---------------------------------------|--------------------------------------------------|----------|--|--|
| Analysis Nam                                   | e D:\Data\JULY                         | (-2022\PK-SS-                                     | CryptnmE2@.d                                                            |                                                   |                          |                      |                                                                |                                       |                                                  |          |  |  |
| Method<br>Sample Name<br>Comment               | Low_mass- N<br>PK-SS-Crypt<br>C33H39N5 | ow_mass- NalCsl.m<br>/K-SS-CryptnmE2@<br>/33H39N5 |                                                                         |                                                   |                          |                      | PPIIN<br>maXis                                                 | impact                                | npact 282001.00081                               |          |  |  |
| Acauisition F                                  | arameter                               |                                                   |                                                                         |                                                   |                          |                      |                                                                |                                       |                                                  |          |  |  |
| Source Type<br>Focus<br>Scan Begin<br>Scan End | ESI<br>Not active<br>50 m/z<br>650 m/z | lon<br>Set<br>Set<br>Set<br>Set                   | Polarity<br>Capillary<br>End Plate Offset<br>Charging Voltage<br>Corona | Positive<br>4000 V<br>-500 V<br>2000 V<br>0 nA    |                          | Si<br>Si<br>Si<br>Si | et Nebuliz<br>et Dry He<br>et Dry Ga<br>et Divert<br>et APCI H | zer<br>eater<br>as<br>Valve<br>Heater | 0.3 Bar<br>180 °C<br>4.0 l/mir<br>Source<br>0 °C | n        |  |  |
| Intens.<br>x10 <sup>6</sup>                    |                                        |                                                   |                                                                         |                                                   |                          | PK-SS-C              | ryptnmE2(                                                      | @.d: +MS, 0                           | .35-0.37min                                      | #21-22   |  |  |
| 4-                                             |                                        | 252, <mark>6</mark> 599<br>294.2139               |                                                                         |                                                   |                          | 504.3130             |                                                                |                                       |                                                  |          |  |  |
| 2-                                             |                                        | 202.0832                                          |                                                                         | 360.3059                                          | 1                        | 461.7534             |                                                                |                                       |                                                  |          |  |  |
| 0                                              | 100                                    | 200                                               | 300                                                                     | *, <b>)</b> · · · · · · · · · · · · · · · · · · · | 100                      | , <u>, ,</u> ,       | 500                                                            |                                       | 600                                              | m/z      |  |  |
| Intens.<br>x10 <sup>6</sup> -                  |                                        | 252.65                                            | 599                                                                     |                                                   |                          | PK-SS-C              | CryptnmE2                                                      | @.d: +MS, (                           | ).35-0.37mir                                     | 1 #21-22 |  |  |
| 4-                                             |                                        | 2                                                 | 268.1295 <sup>294.2139</sup>                                            |                                                   |                          |                      |                                                                |                                       | 50                                               | 04.3130  |  |  |
| 2-                                             | 202.083                                | 32                                                |                                                                         | 334.1268 36                                       | 0.3059                   | 4                    | 19.1971                                                        | 461.7                                 | 534                                              |          |  |  |
| 0                                              | 0 200                                  | 250                                               | 300                                                                     | 350                                               | - <mark> } ,</mark><br>) | 400                  | , <del>\</del> ,                                               | 450                                   |                                                  | 500 m/z  |  |  |
| Meas. m/z #<br>252.6599 1                      | lon Formula<br>C33H39N5                | m/z err [<br>252.6597                             | ppm] mSigma<br>-0.5 297.8                                               | # mSigma<br>1                                     | Score<br>100.00          | rdb e<br>18.0 e      | e <sup>-</sup> Conf                                            | N-Rule<br>ok                          |                                                  |          |  |  |

# HRMS spectra of InqPr2

#### DEPARTMENT OF CHEMISTRY, I.I.T.(B)

#### Analysis Info

| Analysis Info |                                        | Acquisition Date |            | 10/25/2018 2:05:38 AM |  |
|---------------|----------------------------------------|------------------|------------|-----------------------|--|
| Analysis Name | D:\Data\backup_PPI\PK-SP-CRPT-PRPY2@.d | -                |            |                       |  |
| Method        | Tune_pos_NAF-1500A.m                   | Operator         | PPIOUT     |                       |  |
| Sample Name   | PK-SP-CRPT-PRPY2@                      | Instrument       | maXis impa | act 282001.00081      |  |
| Comment       | C37H41N5                               |                  |            |                       |  |

#### **Acquisition Parameter** 0.5 Bar 180 °C 4.0 l/min ESI Ion Polarity Positive Set Nebulizer Source Type Focus Scan Begin Set Capillary Set End Plate Offset 3700 V -500 V Set Dry Heater Active 50 m/z 1500 m/z Set Dry Gas Set Divert Valve Set APCI Heater 2000 V Source 0 °C Set Charging Voltage Scan End Set Corona 0 nA Intens. PK-SP-CRPT-PRPY2@.d: +MS, 0.1-0.4min #5-25 x10<sup>6</sup> 556.3435 3 2 1 445.2390 882.5299 0 200 400 800 1000 1400 600 1200 m/z Intens. PK-SP-CRPT-PRPY2@.d: +MS, 0.1-0.4min #5-25 x106 556<mark>.3</mark>435 3 2 1 570.3204 554.3247 0 540 545 550 555 560 565 570 575 580 m/z # Ion Formula mSigma # mSigma e<sup>-</sup>Conf N-Rule Meas. m/z m/z err [ppm] Score rdb 556.3435 1 C37H42N5 556.3435 -0.1 398.4 100.00 20.0 1 even ok