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Ribonucleoproteins (RNPs) comprise one or more RNA and
protein molecules that interact to form a stable complex, which
commonly involves conformational changes in the more flex-
ible RNA components. Here, we propose that Cas12a RNP
assembly with its cognate CRISPR RNA (crRNA) guide instead
proceeds primarily through Cas12a conformational changes
during binding to more stable, prefolded crRNA 50 pseudoknot
handles. Phylogenetic reconstructions and sequence and
structure alignments revealed that the Cas12a proteins are
divergent in sequence and structure while the crRNA 50 repeat
region, which folds into a pseudoknot and anchors binding to
Cas12a, is highly conserved. Molecular dynamics simulations of
three Cas12a proteins and their cognate guides revealed sub-
stantial flexibility for unbound apo-Cas12a. In contrast, crRNA
50 pseudoknots were predicted to be stable and independently
folded. Limited trypsin hydrolysis, differential scanning fluo-
rimetry, thermal denaturation, and CD analyses supported
conformational changes of Cas12a during RNP assembly and
an independently folded crRNA 50 pseudoknot. This RNP as-
sembly mechanism may be rationalized by evolutionary pres-
sure to conserve CRISPR loci repeat sequence, and therefore
guide RNA structure, to maintain function across all phases of
the CRISPR defense mechanism.

Conformational changes are the basis of protein and RNA
folding from long biopolymers into biologically active mole-
cules (1). The affinity, specificity, and stability of molecular
interactions often scales with buried surface area (or number
of molecular contacts) and the degree of surface comple-
mentarity (2). For RNA-guided enzymes, coevolution of pro-
tein and cognate RNA usually results in burial of significant
portions of the RNA in the protein (3–7). Thus, conforma-
tional accommodations, primarily for the guide RNA, are an
important mechanism for molding and shaping interactions.

Archaeal box C/D ribonucleoprotein (RNP) complexes, for
example, have been characterized to undergo substantial
remodeling and induced fit during RNP assembly (4, 8–11).
Argonaute enzymes undergo minimal, although potentially
important, conformational changes while the guide RNA is
stretched and splayed through the middle of the protein
(7, 12, 13).

CRISPR were first observed in bacteria in 1987 (14) and
1989 (15) as conserved repeat sequences with regularly spaced
interrupting sequences. However, the significance of CRISPR
loci remained unclear. In 2002, when these repeats were
observed in other prokaryotes and CRISPR associated (Cas)
protein-coding genes were found nearby, a unifying name of
CRISPR was coined for these loci (16). It was later found that
CRISPR repeats contained sequences that correspond to
bacteriophage, suggesting an origin for the repeats (17–19). In
2006, it was suggested that these repeats act as an adaptive
immune system to protect against viral invaders (20). This
hypothesis was subsequently shown to be correct (21, 22). The
study of CRISPR function and evolution quickly followed,
leading to characterization of diverse RNA-guided CRISPR-
Cas systems (23).

CRISPR systems act in three phases: adaptation, expression,
and interference. During adaptation and expression, foreign
DNA sequences are incorporated into CRISPR loci and then
expressed as RNA for assembly into CRISPR-Cas RNP effector
complexes (24, 25). Cas12a enzymes originate from type V
CRISPR systems comprising the genes cas12a, cas4, cas1, cas2,
and the repeat array (25). The conserved Cas1/Cas2 complex
functions in spacer acquisition (26, 27). The adaptation com-
plex comprises dimers of Cas2, which bridge pairs of Cas1
dimers, and binds potential protospacers to coordinate their
incorporation into the CRISPR array. Cas1 is thought to have
originated from transposon-like elements (termed casposons)
which encode Cas1 homologs. Diverse Cas1 homologs exhibit
low sequence conservation but retain a similar structure across
the Cas1 phylogeny (28). Recently it has been shown that the
Cas1/Cas2 complex in the type I-B system of Haloarcula
hispanica binds the upstream-most repeat and leader at motifs
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of the CRISPR locus in a sequence and spacing-specific
manner to facilitate new spacer integration (29). Cas12a has
been shown to process its own CRISPR RNA (crRNA),
cleaving upstream of the repeat sequence, which is a stem–
loop structure referred to as the 50 handle. These steps all
rely on recognition of the CRISPR array repeat sequence,
either at the DNA or RNA level, which serves as a common
thread across adaptation, expression, and interference phases
of the CRISPR defense mechanism. This offers a rationale for
strong conservation of repeat sequences in CRISPR array loci.
In contrast, other components, like the Cas12a protein, may be
permitted to undergo greater divergence so long as they still
recognize CRISPR arrays or crRNA and execute their respec-
tive phases.

During the interference phase, RNA-guided CRISPR-Cas
effector enzymes find and pair to complementary nucleic
acids, most often DNA, and catalyze phosphodiester bond
cleavage to induce degradation (25, 30, 31). CRISPR effector
enzymes are composed of one or two RNA molecules and an
endonucleolytic Cas protein (16, 32, 33). During interference,
CRISPR–Cas complexes will first identify candidate targets by
transient Cas protein binding to a protospacer adjacent motif
(PAM) DNA sequence (31). The crRNA guide sequence will
then pair to the complementary protospacer sequence adja-
cent to the PAM (34). The class 2, type V CRISPR systems use
a single effector enzyme, Cas12a, and a single 42 nucleotide
long crRNA guide (35). Cas12a appears to have low off-target
effects in gene editing applications (36) and possesses a T-rich
PAM sequence requirement (35). Interestingly, CRISPR–
Cas12a complexes exhibit a nonsequence-specific, multiturn-
over single-stranded DNase activity, called trans activity, after
sequence-specific cleavage of target DNA has occurred (37,
38). For this reason, Cas12a has been used to develop diag-
nostic assays, such as for COVID-19 detection (38). In addi-
tion, CRISPR–Cas12a is being adapted for human therapeutics
(39–41).

Conformational changes that occur during CRISPR-Cas
RNP assembly and their effects on enzyme activity have been
investigated previously. The Doudna laboratory observed
global structural changes during RNA binding to Cas9 (42, 43)
that coincide with catalytic competence and have been sup-
ported by cryo-EM studies (44). Other studies have investi-
gated RNP assembly and conformational dynamics for Cas9
(42, 45, 46). Several Cas enzyme crystal structures have been
solved (5, 6, 47–51). Recent cryo-EM studies of Cas9 during
precatalytic or target binding steps have revealed some new
conformational states, yet these involve substrate DNA, which
is difficult to uncouple from guide RNA-induced changes (44,
52). These structures provide important insight into CRISPR-
Cas9 structure-function, however the full picture of RNP as-
sembly dynamics may still be incomplete. Cas12a dynamics
during RNP assembly with its cognate guide have been less
explored, owing in part to the historical lack of available high-
resolution structures of Cas12a in the absence of a guide RNA
(53, 54). Cas12a dynamics studies have identified large-scale
“open” and “closed” conformational states upon crRNA
binding that appear to depend on the originating species of the

CRISPR-Cas12a system (51, 53, 55). These studies focused on
one Cas12a and large-scale global structural changes
with target DNA substrate binding (55, 56).

In this study, we sought to investigate Cas12a RNP assembly
through protein and RNA sequence and structural alignments,
phylogenetics, molecular dynamics (MD) simulations, and
spectroscopic and biochemical experiments. We find that
Cas12a sequence diverged during evolution, although protein
structure was relatively well-conserved in the RNP state. In
contrast, the sequence and structure of the crRNA 50 handle
remained highly conserved. MD simulations of Acid-
aminococcus sp. strain BV3L6 (As) Cas12a, as well as Cas12a
from Lachnospiraceae bacterium ND2006 (Lb) and Francisella
tularensis subsp. novicida (Fn), identified substantial protein
structural dynamics that were reduced upon RNA binding,
especially in the Wedge domain involved in RNA and DNA
binding. In contrast, the crRNA 50 handle structure showed
minimal variation between free and bound states. In-solution
limited proteolysis followed by MS identified AsCas12a
lysine residues with reduced accessibility after RNP assembly.
Differential scanning fluorimetry showed improved thermal
stability and folding cooperativity of AsCas12a as an RNP. For
the crRNA 50 handle, thermal denaturation and CD analyses
suggested stable independent folding in the free state. Inter-
domain angle calculations from MD simulations predict little
or no sampling of the RNP conformational state in apo-
Cas12a, suggesting an induced fit over conformational selec-
tion model. Together, these results indicate that Cas12a pro-
tein undergoes substantial conformational rearrangements
induced by binding to the largely prefolded crRNA 50 pseu-
doknot structure. We propose that this assembly mechanism
may be common for CRISPR-Cas systems due to the intrinsic
need to conserve CRISPR loci repeat sequences and therefore
crRNA structures.

Results

To understand RNP assembly across CRISPR-Cas12a sys-
tems, we began by performing a maximum likelihood phylo-
genetic analysis on an alignment of 147 publicly available
Cas12a protein sequences. In our resulting consensus tree
(Fig. 1A), most positions in the alignment were poorly
conserved (�39% on average at positions homologous to the
AsCas12a homolog), leading to low fine-grain phylogenetic
resolution. Three of the Cas12a proteins in the alignment have
been structurally characterized previously, AsCas12a (6),
FnCas12a (57), and LbCas12a (51). The structures of these
homologs are shown in Figure 1B with their placement on the
phylogenetic tree indicated. The resulting topology strongly
suggests that among these three Cas12a homologs, FnCas12a
and LbCas12a are more similar to each other than to
AsCas12a. Overall, their sequence conservation is moderate
based on alignment and BLAST (Fig. S1), with sequence
identity/similarity being 40%/59% for LbCas12a to FnCas12a,
34%/50% for LbCas12a to AsCas12a, and 35%/51% for
AsCas12a to FnCas12a (35, 51). Their structure, by contrast, is
well-conserved, with pairwise RMSD values calculated at
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Figure 1. Sequence and structural relationships among Cas12a homologs. A, consensus maximum likelihood tree of available Cas12a protein se-
quences. Structurally characterized homologs are labeled in red. B, individual crystal structures of Lb, Fn, and AsCas12a corresponding to their location on
the tree shown in panel A. Structural alignment of As (PDB ID: 5B43), Fn (PDB ID: 5NG6), and Lb (PDB ID: 5XUS) Cas12a proteins (C) and crRNAs (D). As,
Acidaminococcus sp; Fn, Francisella tularensis subsp. Novicida; Lb, Lachnospiraceae bacterium.
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2.56 Å for LbCas12a to FnCas12a, 2.20 Å for LbCas12a to
AsCas12a, and 2.78 Å for AsCas12a to FnCas12a when
assembled as RNP complexes (FnCas12a) or ternary com-
plexes with guide RNA and target DNA (LbCas12a and
AsCas12a) (Fig. 1C). These results suggest that the structure-
function of Cas12a RNPs is conserved despite substantial
protein sequence divergence.

RMSD values calculated between the crRNAs of each ho-
molog revealed striking structural similarity (Fig. 1D), with the
distances of AsCas12a to LbCas12a and FnCas12a crRNAs
being 0.12 Å and 0.17 Å, respectively. The distance between

LbCas12a and FnCas12a crRNAs was 0.21 Å. We also aligned
repeat sequences from 28 type V CRISPR systems. In contrast
to the Cas12a proteins, these sequences were highly conserved
in the pseudoknot folding repeat region (35) (Fig. 2, A and B).
The relative distance relationship observed among LbCas12a,
FnCas12a, and AsCas12a proteins (Fig. 1A) was recapitulated
in the topology of the nearest-neighbor tree of their cognate
repeat crRNA sequences constructed by LocARNA (58). Sec-
ondary structure analysis of this alignment using LocARNA,
which does not predict pseudoknots, revealed a conserved
hairpin structure (35) (Fig. 2B) consistent with the core of the

Figure 2. Conservation of Cas12a-associated repeat sequence and folding. A, nearest neighbor joining tree and (B) alignment of 28 type V CRISPR
repeats. The LocARNA-predicted secondary structure (right) is indicated at the top of the sequence alignment. The 50 leader sequence is highlighted in
orange and the stem and loop of the predicted stem–loop structure is highlighted in green and blue, respectively. C, repeat consensus sequence shown with
the secondary structure predicted for the alignment in (A) with the same color coding. D, superimposed image of the representative structures of the major
cluster in the free pseudoknot (magenta) and AsCas12a-bound pseudoknot (green) in the AsCas12a RNP complex from 1 μs molecular dynamics simulation
trajectories. RNP, ribonucleoprotein.
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50 pseudoknot observed in solved Cas12a structures. The
predicted structure is shown with the consensus sequence of
the aligned repeats (Fig. 2C). These results suggest that the
sequence and structure of the crRNA 50 handle has remained
remarkably stable.

To gain insights into the structural dynamics of Cas12a-
crRNA RNP assembly, MD studies were conducted. Three
different systems were initially prepared–AsCas12a protein
alone (apo-AsCas12a), the AsCas12a RNA pseudoknot alone
(free pseudoknot), and AsCas12a bound to its cognate crRNA
(AsCas12a RNP)–and then subjected to 1 μs of an unre-
strained production run in the graphics processor unit accel-
erated version of Particle Mesh Ewald Molecular Dynamics
(59–61) in AMBER 18 (https://ambermd.org/) (62).

The analysis of trajectories was carried out in two stages.
The pseudoknot structural stability and flexibility were
explored in the first stage and the protein structural stability
and flexibility were examined in the second stage. The RMSD
of the pseudoknot backbone atoms were calculated using the
first simulation frame as reference (Fig. S2A). The RMSD plot
indicates minimal deviations between the free pseudoknot
alone and the pseudoknot in the RNP. This suggests that the
simulations are equilibrated and the pseudoknot is stable
throughout the 1 μs production run. The RMSD value is
slightly higher in the case of free pseudoknot, mainly due to
the fraying of the terminal nucleotides and the absence of
interactions with the protein. This is further demonstrated by
the RMS fluctuations (RMSF) values (Fig. S2B). The RMSF
plot shows that the residues exhibit similar fluctuations, with
nearly identical values in the core hairpin of the structure,
indicating that the pseudoknot behaves similarly in the free
and bound forms.

The end-to-end distances in the pseudoknot can be used to
report structural rigidity and stability during the simulation.
The terminal nucleotides were not used for the measurement
to avoid possible fluctuations due to the terminal fraying of
base pairs. When the end-to-end distances were calculated, the
values showed negligible deviations in the free and bound
forms (Fig. S2C). Thus, the rigidity of the pseudoknot is
maintained in both free and bound forms. The 1 μs simulation
trajectories were clustered into ten ensembles. The represen-
tative structures of the major cluster of the free and bound
pseudoknot were then superimposed to visualize structural
fluctuations (Fig. 2D). The structures superimposed with an
RMSD value less than 2.5 Å, confirming that the pseudoknot
does not undergo any significant structural changes when
bound to the Cas12a protein.

In the second stage of analysis, the RMSD of the backbone
atoms of AsCas12a protein were measured with respect to the
initial frame of the simulation (Fig. S3A). The equilibration of
the simulations was observed from the RMSD plots, which
showed marginal differences in the protein structure alone
without the crRNA and in the RNP complex. The RMSF plots
indicate that several regions, which include residues ranging
from 150 to 300 and 750 to 85 show significant deviations
between the protein alone versus in the RNP complex
(Fig. S3B). These regions include parts of the PI, wedge, and

REC domains. A previous study reported increased occupancy
of a “closed” high fluorescence energy transfer (FRET) state for
FnCas12a upon crRNA binding, as indicated by REC and NUC
domain distance measurements via single molecule FRET (55).
The RMSF values for the protein in the RNP complex were less
than the protein alone without the pseudoknot, indicating that
the protein becomes more ordered in the presence of the
crRNA. The distance between the Cα atoms of amino acids in
close vicinity of the pseudoknot were calculated to identify any
rearrangements in the protein that might help accommodate
the crRNA pseudoknot. We selected K15-L807, R863-L1022,
and H977-D966 distances as representative since they are all in
the wedge and RuvC domains and make close contact with
either the loop or the terminals of the pseudoknot (Fig. 3A).
The distances varied between the systems, and the protein in
RNP showed smaller distance fluctuations than the protein
alone, especially for K15-L807 and R863-L1022, which sug-
gests conformational sampling by AsCas12a protein to
accommodate the crRNA pseudoknot during RNP assembly
(Fig. 3, B–D).

The 2D-RMSD values were calculated for each protein
domain to detect the regions of high protein mobility. The
values clearly showed that the REC domain and WED-III
domain showed significant differences between the two sys-
tems. The 2D-RMSD values of the wedge domain in the
protein without pseudoknot RNA displayed values as high as
10 Å, while the values remained <5 Å in the case of the RNP
(Fig. S4, A and B). This confirms our previous observation
from the RMSF values that the protein becomes more stabi-
lized in the presence of the crRNA. The representative struc-
tures of the major clusters (Fig. 4, A and B) were visually
inspected to validate the variations seen in the 2D-RMSD
plots. The WED-III domain and REC domain rearranged to
incorporate the RNA into the RNP complex. The pseudoknot
rearranges the WED-III domain while the single-stranded
guide region rearranges the REC domain in the RNP com-
plex for enhanced binding.

To identify the major mode of domain motion (maximum
variance), principal component (PC) analysis was carried out
(Fig. 4, C and D). The translational motion was initially
removed by fitting the trajectory to an average structure. The
projection diagrams and pseudo trajectories from PC analysis
were analyzed to obtain a pattern of the major movements
resulting in the conformational preferences discussed in the
cluster analysis. In the protein only system, the REC2 and the
WED-III directions allow them to occupy some of the space
where the RNA is usually bound. Compared to the RNP
complex, the REC2 and WED-III domains show movement
directed toward creating space to accommodate the crRNA
pseudoknot and guide spacer sequence. The PI and REC1
domains in the RNP complex exhibit a circular motion with
one part slightly moving away from the cleft, while the smaller
helix moves toward the cleft, which would subsequently bind
the DNA target for catalysis (56). This motion is not exactly
the same in the absence of crRNA. The amplitude of motion
shows minimal variations in domains other than the PI in the
first PC. The histogram of the first and second PC modes of
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the RNP and protein alone (Fig. S5A) shows no convergence
suggesting the variation in conformational preferences.
Though the deviation is not high, the regions spanned by the
PC mode 1 and mode 2 of the apo protein and RNP complex
are different (Fig. S5B).

Solvent accessible surface area (SASA) of the protein was
calculated from the trajectories of protein alone and the RNP
complex simulations (Fig. S6). The ΔSASA was found to be
�4000 Å2, with the RNP complex having a less value, sug-
gesting the protein becomes more ordered and compact upon
RNP assembly. The rearrangements in the protein to accom-
modate RNA were explored further by comparing the surface
electrostatic potential images of the protein (Fig. S7). The
positively charged regions are rearranged in the RNP complex,
likely to ensure better interaction with the negatively charged
backbone of the RNA.

To rule out potential bias by using a manually generated
model of apo-AsCas12a from a DNA-bound ternary structure,
MD simulations were also carried out on apo form deposited
in the AlphaFold database. Though the RMSF values were
slightly lower than the manually generated structure, the
overall trend in the structural properties (RMSD, RMSF, dis-
tances, and SASA) remained the same in both models
(Figs. S8–S11).

MD simulations on FnCas12a (PDB ID: 5NG6) and
LbCas12a (PDB ID: 5ID6) RNP, apoprotein, and pseudoknot
were also carried out to determine whether our observations
for AsCas12a might apply more broadly to other CRISPR–
Cas12a complexes. For both FnCas12a and LbCas12a, the
RNA pseudoknot was stable throughout the simulations with
similar values of RMSF (Fig. S12) and end-to-end distances
(Fig. S13) in both the free and bound forms. Due to terminal
and loop nucleotide fraying, the RMSD is slightly higher for
the free forms in both cases (Fig. S14). The major clusters of
the free and bound form of pseudoknot superimposed with an
RMSD value <2.7 Å and <2.6 Å in FnCas12a (Fig. S15A) and
LbCas12a (Fig. S15B) complexes, respectively. Similar to
AsCas12a, the pseudoknot structure also remained stable in
these complexes.

The protein alone was more dynamic than the RNP complex
for both FnCas12a and LbCas12a, with a higher value for the
latter. In the FnCas12a system, the RMSF plots revealed more
deviations in the wedge, PI, and RuvC domains, similar to what
was observed in AsCas12a (Fig. S16A). The domain designa-
tions are different in LbCas12a but greater deviations in the
RMSF values were found in the oligonucleotide binding
domain (OBD) and RuvC domain (Fig. S16B). These results
show that the domains responsible for interacting with RNA
exhibit variation in dynamics during RNP assembly. The dis-
tance analysis between the Cα atoms of the amino acids in the
immediate vicinity of the RNA pseudoknot revealed that the
Cas12a protein had undergone some rearrangement to
accommodate the pseudoknot in both FnCas12a and LbCas12a
complexes (Fig. S17). While the values are constant in the RNP
complexes, variations in the apo form were observed that
indicate a compaction of the protein upon RNA binding.

Figure 3. Molecular dynamics simulations indicate that AsCas12a is
structurally less dynamic and less solvent accessible when bound to its
cognate crRNA. A, representative image illustrating the amino acids
considered for distance measurements during molecular dynamic simula-
tions. The distance between the Cα atoms of (B) K15 and L807, (C) R863 and
L1022, and (D) H977 and D966 from 1 μs trajectories. The running averages
of the distances are represented in the plot.
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The superimposition of major clusters of Fn and Lb Cas12a
in the apo and RNP complexes revealed changes in the
domain indicated by the RMSF values. While the WED-III
domain loop showed maximum variation in FnCas12a
(Fig. S18A), the OBD, UK, and RuvC domains showed high
fluctuation in LbCas12a (Fig. S18B). Irrespective of the
Cas12a type, the rearrangement is nearly identical around the
RNA pseudoknot. Further, the electrostatic surface potential
images also confirmed the rearrangement of positively
charged residues to better accommodate the negatively
charged backbone of the RNA pseudoknot (Fig. S19). In
FnCas12a and LbCas12a, the RNP assembly results in about a
5% reduction in the overall SASA (Fig. S20). Overall, MD
studies of FnCas12a and LbCas12a led to results quite similar
to those of AsCas12a.

To assess whether conformational changes associated with
the Cas12a RNP assembly are a result of induced fit or
conformational selection, two related but distinct binding
modes, interdomain angles from AsCas12a simulations were
sampled (63). The RNA pseudoknot and single-stranded
portion of the guide RNA are near the Wedge, REC, RuvC,
and NUC domains. Therefore, the orientation of these do-
mains might differ in the apo form and RNP complex. The
interdomain angles between WED-II: WED-III: RuvC
(Fig. S21A) and REC2: RuvC: NUC (Fig. S21B) were calculated
(RuvC-I and RuvC-II were considered together). The density
plots with these angles as coordinates revealed that the sam-
pling differs in the apo and RNP forms (Fig. 4, E and F). The
apo form exhibits an open structure with a large interdomain
angle, while the RNP exhibits a closed structure with a slight

Figure 4. Molecular dynamics simulations predict distinct dynamics and domain motion for AsCas12a protein versus AsCas12a RNP. Representative
snapshots of the major clusters of (A) AsCas12a protein system and (B) AsCas12a RNP complex from the 1 μs trajectories. The protein is shown in surface
representation. The PI domain is represented in beige color, the wedge domain in yellow, RuvC domain in cyan, REC domain in gray, and the Nuc domain in
magenta. The pseudoknot is represented as cartoon in red. Representative images of the principal motion of protein in (C) AsCas12a protein alone and (D)
AsCas12a RNP complex. Domain colors are the same as in panels A and B except the bridge helix (BH) is shown in green. The arrows are marked according to
the pseudo trajectory and do not indicate the amplitude of motion. The 3D perspective of the domain movements might not be clearly visible in the given
representation. Density plots of the interdomain angles in (E) apo-AsCas12a protein alone or (F) AsCas12a RNP. The density plot represents the sampling of
the angle and the maximum population is represented with the highest density. RNP, ribonucleoprotein.

Cas12a conformational dynamics during RNP assembly

J. Biol. Chem. (2023) 299(5) 104700 7



interdomain angle. The angle associated with the closed form
is only seen in the RNP and not present in the sampling of the
apo-protein. The cluster distribution of the apo and RNP also
confirmed the same. The major clusters of the apo and RNP
forms show high RMSD upon superimposing with each other
and no representative structures from the clustering are
similar in both of these forms (Fig. 4, A and B). Thus, the
closed form is associated only with the RNP and the apo form
does not exhibit the flexibility to adopt open/closed confor-
mations. These results suggest that Cas12a RNP assembly
proceeds through induced fit rather than conformational se-
lection since the necessary RNP conformation is essentially
never sampled in the apo form (63).

To experimentally investigate the structural flexibility of
AsCas12a, we subjected the free protein or assembled RNP to
limited trypsin proteolysis. The presence of crRNA appeared
to reduce cleavage efficiencies at three sites (Fig. 5A). Mass
spectrometric analysis of these bands revealed that they cor-
responded to protection from trypsin proteolysis at K739,
K570, and K576 (Fig. S22). Of these, K570 and K576 are found
in the OBD-II, which is involved in crRNA and target DNA
binding (51) (Fig. 5B). To observe global effects on AsCas12a
conformation and stability during RNP assembly, we per-
formed differential scanning fluorimetry (DSF) on AsCas12a
with and without crRNA. This method uses a dye specific for
protein rather than UV absorbance at 280 nm, eliminating
potentially confounding UV signal overlap from the RNA.
AsCas12a alone exhibited a biphasic melt profile, suggesting at
least two structures that largely unfolded independently (64).
Their melting temperature (Tm) values were calculated at
43.10 �C ± 0.01 deg. C and 48.62 �C ± 0.02 deg. C. When
crRNA was present, AsCas12a unfolded cooperatively as an
apparent single structure with a Tm of 46.15 �C ± 0.04 deg. C
(Fig. 5C). To assess the unfolding model that best fits the data,
we performed fits to a two-state folded–unfolded model and to
a three-state sequential folded-intermediate-unfolded model
(Fig. S23). While this model fitting is not sufficient to provide a
detailed understanding of the protein folding landscape,
unfolding via a structural intermediate in the three-state
model fit the data best. This suggests that significant struc-
tural or stability changes to Cas12a occurred upon RNP
assembly.

To determine the stability and folding of the crRNA pseu-
doknot in solution, we performed UV-monitored thermal
denaturation and CD analyses. The RNA pseudoknot sequence
is composed of the 19 nucleotides of the AsCas12a crRNA 50

end. Control DNA and RNA hairpin sequences were created
by replacing the three 50 terminal nucleotides with cytidines to
prevent pseudoknot formation (Fig. 5D). Thermal denatur-
ation revealed that the pseudoknot unfolded similarly to the
control, model hairpin RNA sequence, with similar Tm values
of 61.8 �C ± 0.3 deg. C and 60.7 �C ± 0.3 deg. C, respectively
(Fig. 5E). The slight increase in Tm for the pseudoknot may be
attributable to additional base-pairing interactions in the
structure (65). As expected, the DNA hairpin appeared to
possess a less stable structure (65), with a Tm of 48.3 �C ± 0.6
deg. C. When we performed CD analyses, we observed nearly

identical spectra for the pseudoknot RNA and hairpin RNA,
characteristic of A-form structure (66), with a small shift in the
250 to 300 nm range (Fig. 5F). The DNA hairpin generated a
distinct spectra indicative of B-form structure (66). These re-
sults point to a well-formed crRNA pseudoknot in solution
independent of protein binding.

Discussion

Our results indicate that Cas12a proteins undergo confor-
mational rearrangements to accommodate crRNA binding
during RNP assembly. In contrast, the crRNA 50 pseudoknot,
the primary “handle” that Cas12a binds, appears to undergo
very little structural alterations. The highly conserved nature
of the crRNA repeat sequence, corresponding to the 50 pseu-
doknot handle, and its interconnected role across adaptation,
expression, and interference phases of CRISPR mechanism,
implies that alterations to sequence or structure would likely
be deleterious to the system. Cas12a proteins, on the other
hand, appear to evolve much more rapidly, sustaining far more
sequence changes, and to a lesser extent structural alterations,
through evolution. In-solution studies demonstrated confor-
mational changes of AsCas12a upon crRNA binding while the
crRNA pseudoknot handle itself appeared quite stable alone, in
agreement with MD simulations.

RNA-guided enzymes are a unique class of enzymes that
share an intimate relationship with their cognate RNA part-
ners. The protein component is typically inactive when not
associated with its RNA guide (67). The guide RNA specifies
the substrate through Watson–Crick hybridization and
correctly positions it into the protein’s active site (7, 68). The
guide sequence can vary, allowing a single type of protein to
catalyze the same reaction on countless targets of varying
sequence. Since RNA-guided enzymes can be programmed to
target different sequences, understanding the rules of RNP
assembly is important for understanding how these systems
evolved and how to better leverage them for biotechnology and
biomedical applications.

For engineering Cas12a enzymes, it is important to not
introduce modifications that can significantly perturb the
folding or stability of the pseudoknot structure. A recent study
investigated a diverse class of chemical modifications in the
pseudoknot and indeed concluded that smaller modifications
known to maintain RNA structure, such as 20-fluororibose,
were the most compatible (39). Likewise, targeted mutagenesis
of Cas12a protein should avoid altering the dynamic flexibility
or folding of the enzyme, such as increasing rigidity, in regions
that must mediate guide RNA contact or else risk weaker
binding affinity and poor RNP assembly or stability. Interest-
ingly, unbiased Cas12a mutagenesis screens aimed at
improved activity found that favorable mutations lie outside of
the wedge domain, which was the most dynamic during our
crRNA binding simulations (41, 69).

These findings for Cas12a may also extend to other
CRISPR-Cas systems. The need to conserve CRISPR array
repeat sequences across all phases of the CRISPR mechanism
is a common feature for CRISPR-Cas systems. For Cas9
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systems, the structure of Cas9 from Streptococcus pyogenes has
a large number of unresolved residues in the absence of a
bound guide RNA (43, 70). Upon comparison to Cas9 RNP or

ternary structures, these regions become structured and
appear to be heavily involved in RNA binding (5, 43, 48, 70). In
addition, the binding of crRNA and trans-acting crRNA

Figure 5. Cas12a undergoes conformational changes upon RNP assembly, whereas the crRNA pseudoknot is independently folded. A, limited
trypsin proteolysis of AsCas12a with and without its cognate crRNA bound. Digestion products corresponding to differential trypsin accessibility are
indicated to the right. B, amino acids corresponding to differentially accessible sites from (A), determined by MS, are highlighted in red spheres on the
structure of AsCas12a. C, differential scanning fluorimetry of AsCas12a alone or bound to crRNA. D, sequence and predicted 2D structure of RNA and DNA
used for thermal denaturation and CD analyses. E, UV-monitored thermal denaturation analysis and (F) CD spectra of the AsCas12a 50 handle pseudoknot
unbound to AsCas12a. DNA and RNA hairpins are comparative controls. Error is shown as SEM of three experimental replicates. RNP, ribonucleoprotein.
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guides, as well as single-guide RNAs, to Cas9 have been pro-
posed to modulate the conformational dynamics of Cas9
(42, 45, 46).

While our study cannot definitively distinguish between
induced fit and conformational selection binding modes dur-
ing RNP assembly, results are better explained by an induced
fit model. In induced fit mechanisms, the ligand binds an
“inactive” state of the receptor, usually “loosely” or at low af-
finity, but then small, sequential conformational changes can
occur where the protein creates more ligand contacts. For
assembly of RNP complexes, this usually involves induced fit of
the RNA rather than the protein or else a mutual induced fit of
both protein and RNA (9, 11, 71, 72). Induced fit can be
considered a special case of conformational selection but the
two are often viewed as competing models (73, 74). Confor-
mational selection posits that the receptor or enzyme occupies
all possible states at different likelihoods and toggles between
sampling “active” and “inactive” states. Thus, the kinetics of
sampling can become important. Only when the protein
transiently samples the active state can the ligand bind, which
shifts the population of enzyme toward an active form. This
creates a “selection” for the active conformation (74).

Some criteria for distinguishing induced fit and conforma-
tional selection can be applied (73). First, the range of
conformational states can be informative (74, 75). For
AsCas12a, the residues and domains that interact with the 50

handle appear to occupy a broad range of dynamic confor-
mations. This would suggest the ability to accommodate many
incremental changes that could tune its structure to fit the
crRNA ligand (74, 76). Indeed, the protein appears to wrap
around and protect the RNA after complex formation, which
generates very low nanomolar binding affinity (77) (Fig. 4).
Importantly, however, interdomain angle sampling from MD
simulations revealed that the angles, and therefore confor-
mational states, primarily occupied by the RNP form of
AsCas12a are almost never sampled in simulations of the apo-
AsCas12a. These results strongly argue against conformational
selection as a likely mechanism of RNP assembly (63). Previous
simulations of U1A protein binding to the hairpin II of U1
snRNA argued for induced fit based on the absence of the
bound conformer when not assembled into the RNP. Only
when the RNP complex was formed was the bound conformer
observed and stable (75), similar to our interdomain angle
analyses (Fig. 4, E and F).

Second, the timescale of conformational transitions, and
therefore kinetics, is important (73, 76). If conformational
transitions from an unbound/inactive to bound/active structure
are infrequent and slow for Cas12a, then conformational se-
lection could be argued. However, AsCas12a transitions in and
out of the free and RNP conformational states are very rapid,
on a nanosecond timescale, as observed by K15-L807 and
H977-D966 residue distance measurements (Fig. 3). Third,
although we did not explicitly focus on the role of the variable
guide/spacer sequence of crRNA during binding, it is possible
that this contributes an additional binding module. The ne-
cessity of distinct binding steps to produce high affinity binding

of U1A to U1 hairpin II RNA has been used to support induced
fit mechanisms (78). The first step was electrostatic-mediated
binding, referred to as the “lure,” which could be partially ful-
filled by the negatively charged phosphate backbone of the
crRNA spacer sequence, followed by a more specific “lock”
step, potentially fulfilled by the crRNA 50 pseudoknot handle.
The observation that modified 50 extensions to the end of the
Cas12a crRNA can improve enzyme activity may be partially
attributable to improved binding affinity via electrostatic in-
teractions with Cas12a (77, 79, 80). Thus, the entire crRNA
may participate in stepwise conformational changes that would
be indicative of induced fit binding.

In this study, we were limited by the number of Cas12a and
crRNA sequences suitable for our analysis. Nonetheless, they
were sufficient to generate phylogenetic trees that could assess
relatedness and for interpretation of sequence conservation
across species. A greater number of sequences could refine our
analyses but are unlikely to change the overarching observa-
tion of relatively low protein sequence homology compared to
high repeat sequence (50 pseudoknot) conservation. For
structural comparisons, we were also limited to the three
available structures of Cas12a. However, these were fortu-
itously well-distributed across the inferred phylogenetic tree,
which provided higher confidence that they were representa-
tive. Importantly, despite sequence divergence, the final folded
structures of Cas12a proteins, especially around the guide
RNA 50 pseudoknot, were highly similar. The crRNA pseu-
doknot structures themselves were nearly identical. While this
study focused more on AsCas12a, simulations using FnCas12a
and LbCas12a were also in agreement with our conclusions.
Initial model selection can also be a limitation. Our simula-
tions began with manually generated apo-AsCas12a from the
DNA-bound ternary structure using coordinate extraction.
Beginning with an apo crystal structure could generate fine
variations in the results, though we would not expect these to
significantly alter the major conclusions from this study.
Indeed, beginning with an alternative de novo predicted apo-
AsCas12a structure from the AlphaFold database resulted in
remarkably similar outcomes in our MD simulations.

We also limited our in-solution experimental studies to
AsCas12a as a model system. It is likely that limited trypsin
proteolysis of other Cas12a members would yield alternative
cleavage patterns as these will depend on surface accessibility
of lysine or arginine residues. However, we would still expect
to observe altered peptide cleavage patterns. Finer mapping of
AsCas12a may also be achieved with other peptide hydrolysis
methods or proteases and would be expected to create a more
complete picture of conformational changes during RNP as-
sembly. Ultimately, other methodologies to map the confor-
mational states of Cas12a and their occupancy level when free
and bound to guide RNA, especially at very fast time scales
during RNP assembly, would help further establish the mo-
lecular mode of binding. These could include experimental
structural, thermodynamic, molecular distance, and kinetic
measurements that could further support or refute induced fit
mechanisms.
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Experimental procedures

Cas12a sequence alignment, phylogenetic analysis, and
structure alignment

Cas12a sequences were downloaded from UniProt (uniprot.
org). Sequences less than 800 amino acids and duplicate taxa
were removed before alignment with ClustalW (81). This
alignment was used for maximum likelihood phylogenetic
inference in MEGA11 with 500 bootstrap replicates and the
JTT model of protein evolution (82). For simplicity, a
consensus tree was produced with nodes having a bootstrap
value less than 50 collapsed into polytomies. For comparing
Cas12a RNP structures, Cas12a RNP or ternary complexes
solved for Lachnospiraceae bacterium ND2006 (Lb) Cas12a
(PDB ID: 5XUS) (51), F. tularensis subsp. novicida (Fn) Cas12a
(PDB ID: 5NG6) (57), and Acidaminococcus sp. strain BV3L6
(As) Cas12a (PDB ID: 5B43) (6) were aligned in PyMOL
(https://pymol.org/2/) (v1.5.0.5).

crRNA repeat alignment and secondary structure prediction

Type V repeat sequences were downloaded from CRISPRdb
(https://crispr.i2bc.paris-saclay.fr/). These repeats were aligned
and their secondary structure predicted with LocARNA
(https://rna.informatik.uni-freiburg.de/LocARNA) (58). A
consensus sequence for the alignment was generated with a
cut-off of 55%. A visualization of the predicted secondary
structure from LocARNA with this consensus sequence was
constructed with forna (http://rna.tbi.univie.ac.at/forna/) (83).

MD structure preparation

FnCas12a, and LbCas12a

The crystal structure of the Cas12a complex (PDB ID: 5B43)
(6) FnCas12a (PDB ID: 5NG6) (57) and LbCas12a (PDB ID:
5ID6) (51) were used for MD studies. The missing residues in
the protein were filled by using the SWISS-MODEL (84)
webserver. To generate the Cas12a RNP model, the DNA part
of the crystal structure was manually removed. Similarly, the
protein only structure was generated by removing the RNA
part. The coordinates of the pseudoknot sequence were
manually extracted and used for the preparation of the free
pseudoknot RNA. The apo structure of AsCas12a from
AlphaFold database (https://alphafold.ebi.ac.uk/entry/U2
UMQ6) has also been utilized for the simulation. The Amber
ff14SB (85) force field for protein, the ff99bsc0+χOL3 (86–88)
force field for RNA, and TIP3P (89) model for water have been
employed. The system was solvated using a 10 Å rectangular
water box and Na+/Cl- ions were added to neutralize the
complexes in the tleap module of AmberTools 19.

MD methodology

The MD protocol used in earlier studies by Palermo and co-
workers was used with slight modifications for the protein and
RNP systems (56). An initial minimization of 10,000 steps
(5000 steps of steepest descent along with 5000 steps of con-
jugate gradient) with a restraint of 300 kcal/mol⋅Å2 on the
biomolecules was carried out followed by another 10,000 steps

(5000 steps of steepest descent along with 5000 steps of con-
jugate gradient) without any restraints. The heating was done
in four stages where systems were heated up from 0 to 50 K
and 50 to 100 K by running two simulations of 50 ps each
(NVT) imposing harmonic restraints of 100 kcal/mol⋅Å2 on
the protein and RNA. The temperature was then increased to
200 K in 100 ps (NVT) with a smaller restraint of 25 kcal/
mol⋅Å2 and to 300 K in 500 ps without any restraints (NPT).
One nanosecond equilibration followed by a test production
run of 10 ns was carried out (NPT).

The MD simulation of the pseudoknot was carried out
starting with 1000 steps of minimization (500 steps of steepest
descent), followed by a 20 ps of equilibration with a restraint
force of 25 kcal/mol⋅Å2 on the pseudoknot, at a temperature of
100 K (NVT). A further 2500 steps of unrestrained minimi-
zation with 1000 steps of steepest descent and 100 ps of un-
restrained equilibration using a constant pressure periodic
boundary of 1 atm was carried out where the temperature was
increased from 100 K to 300 K. Finally, production run for 1 μs
was performed on the protein, RNP complex, and pseudoknot
at 300 K using the GPU accelerated version of Particle Mesh
Ewald Molecular Dynamics of AMBER 18. The time step used
in MD simulations was 2 fs and the cut off for long range
electrostatic interaction 10 Å. The SHAKE algorithm was
applied to the bonds containing hydrogens. Langevin dynamics
was used for temperature control (90) and Berendsen barostat
(91) was used for pressure control for all the simulations.

MD simulation analysis

All the analyses were carried out using the CPPTRAJ (92)
module of the AmberTools 19 (https://ambermd.org/
AmberTools.php), VMD (https://www.ks.uiuc.edu/Research/
vmd/) (93), and PyMOL Molecular Graphics System (https://
pymol.org/2/), version 2.0 (Schrodinger, LLC). The RMSD of
the protein backbone and the RNA backbone were calculated
using the first frame of the 1 μs simulation as the reference. All
frames were considered for the calculation. RMSF analysis and
the distance between the cα atoms of the amino acids were
calculated using the CPPTRAJ module considering every
frame of the simulation. The 2DRMSD studies were carried
out using every 1000th frame of simulation. The command
2drms in CPPTRAJ was used for the calculation and only the
C, N, O, CA, and CB backbone atoms were considered. The
information saved was further plotted using gnuplot (http://
www.gnuplot.info/). The surf command in CPPTRAJ was
used to calculate the SASA, which uses the LCPO algorithm
(94). The surface electrostatic potential calculation was carried
out using the ABPS electrostatic plugin in PyMOL. This
calculation was carried out using the major cluster snapshots
of the systems. The trajectories were visualized in VMD and
the images were rendered using PyMOL.

PC analysis

PC analysis was carried out using the whole 1 μs simulation
of the MD trajectories. Only the Cα atoms were considered for
the analysis. Initially, the translational and rotational motion of
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the protein is removed by fitting the trajectory to the average
MD structure. Further coordinate covariance matrix, eigen
values, and eigen vectors were calculated. A pseudo trajectory
to visualize the first PC was also generated. The principal
motions were visualized using the normal mode wizard plugin
in the VMD software.

Cluster analysis

Average-linked hierarchical agglomerative clustering algo-
rithm was used for the cluster analysis using CPPTRAJ. The
rms distances of the protein backbone was used as the refer-
ence distance for the clustering procedure. The centroid of the
cluster summary was extracted as the major cluster snapshot.
The epsilon value for the analysis was 3 Å and every 15th
frame was considered for the analysis.

Limited trypsin hydrolysis and MS of AsCas12a protein and
RNP

Plasmid encoding His(6x)-MBP-AsCas12a was obtained
from Addgene (79,007) (95) and protein prepared as
described (39). crRNA targeting an EGFP sequence (crEGIP)
(39) was synthesized and purified by Integrated DNA Tech-
nologies. Trypsin proteolysis was performed similarly as
described (39). Briefly, 30 μg of AsCas12a was incubated in
the presence and absence of crRNA (1:1.5 M ratio) at 23 �C
for 5 min. The resulting samples were incubated with
Trypsin-EDTA solution (0.05%, Invitrogen) at a mass ratio of
100:1 and incubated at 37 �C for 15 min. The reaction was
stopped by the addition of SDS-PAGE loading buffer (New
England Biolabs) and incubation at 95 �C for 5 min. The
reaction products were analyzed by 12% SDS-PAGE and
stained with Coomassie brilliant blue G-250 in 50% (v/v)
methanol and 10% (v/v) acetic acid then destained in the
same solution without dye. Differential bands of interest were
gel extracted and shipped to the UT Southwestern Medical
Center Proteomics Core facility for LC/MS/MS mass spec-
trometric identification using their Gel Band ID
service. Data was analyzed using Proteome Discoverer 2.4
(https://www.thermofisher.com/us/en/home/industrial/mass-
spectrometry/liquid-chromatography-mass-spectrometry-lc-
ms/lc-ms-software/multi-omics-data-analysis/proteome-dis
coverer-software.html) and searched using the His(6x)-
MBP-AsCas12a protein sequence.

Differential scanning fluorimetry of AsCas12a

Thermal-shift assays were performed using a Bio-Rad
CFX96 instrument with the FRET channel. AsCas12a alone
and AsCas12a:crRNA (1:1) complex were incubated at room
temperature for 10 min in a final assay concentration of 1x
DSF buffer (100 mM Hepes, pH 7.5, 100 mM NaCl, 1 mM
MgCl2). SYPRO Orange Protein Gel Stain 5000× (Thermo
Fisher Scientific) was freshly diluted to 171.25× in nuclease-
free water and 2 μl was spotted into the wells of a Hard-
Shell 96-well PCR Plate (Bio-Rad). The incubated solution
was then added to wells to a final assay volume of 25 μl and
AsCas12a or AsCas12a:crRNA (1:1) concentration of 3.3 μM.

The plate was sealed with Microseal “B” PCR Plate Sealing
Film (Bio-Rad) and samples were heated from 25 �C to 85 �C
at a ramp rate of 1 �C/min. A single fluorescence was collected
every 30 s. The melting temperature (Tm) was determined
using wTSA-CRAFT (https://bioserv.cbs.cnrs.fr/TSA_
CRAFT/) (96).

Temperature-dependent SYPRO Orange emission intensity
curves were analyzed to extract midpoint temperatures (Tm)
and Van’t Hoff enthalpies of folding (ΔH) using two-state (F
# U) and sequential three-state (F # I # U) unfolding
models as described (97, 98). Briefly total signals (St) in DSF
curves were baseline corrected by extrapolating linear regions
(99) (e.g., 25–30 �C and 75–80 �C) and fractional signals were
fit to each model using unconstrained nonlinear regressions in
MATLAB (MathWorks). For each complex, mean values and
95% confidence intervals from three independent trials are
reported.

Nucleic acid thermal denaturation monitored by UV
absorbance

Experiments were performed on a Varian Cary 100 Bio UV-
Visible Spectrophotometer equipped with a Cary Temperature
Controller using a 1 cm path length cuvette. Oligonucleotides
were purchased from Integrated DNA Technologies. Samples
were prepared at a concentration of 2 μM oligonucleotide in
10 mM sodium phosphate buffer, pH 7.0, and 2 mM MgCl2
with a final sample volume of 500 μl. Samples were slow-
annealed by heating to 95 �C for 10 min, slowly cooling to
25 �C over 3 h, and then incubating them at 4 �C for 16 h.
Absorbance values were acquired at 260 nm over the range of
5 to 95 �C at a ramp rate of 0.5 �C/min with a data collection
interval of 0.5 �C. The background was subtracted using
Varian software and measurements performed in triplicate.
The maximum value of the first derivative curves were used to
determine the Tm values. The average Tm of each oligonu-
cleotide with the corresponding SD is reported along with the
normalized absorbance spectra.

Nucleic acid CD

Experiments were performed on a Chirascan VX Spectro-
photometer using a 1 mm path length cuvette. Oligonucleotide
samples were prepared at a concentration of 20 μMwith a final
sample volume of 200 μl. The buffer and slow-annealing
conditions were the same as for thermal denaturation exper-
iments. Ellipticity spectra were recorded over the range of 320
to 200 nm with a bandwidth of 1 nm, a sampling rate of 0.5 s-
per-point, and a data collection interval of 1 nm. Three ac-
quisitions were obtained for each oligonucleotide to create an
average spectrum, from which the background spectrum was
subtracted. The final reported spectra were smoothed using
Chirascan software.

Data availability

The datasets and computer code generated or used in this
study are available upon request to P. I. P. Phylogenetic
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reconstruction datasets and sequences, as well as original MS
data, are available upon request to K. T. G.
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Figure S2. RMSD, RMSF and end-to-end distance graphs of the pseudoknot in free and AsCas12a-bound
forms. The free form is represented in red and the pseudoknot bound to RNP complex in black. (A) The
RMSD values were calculated from the 1 μs trajectories. (B) Per nucleotide RMSF of the pseudoknot in
the free and bound form. (C) End-to end distance of the pseudoknot in the free and bound form. The
distances were calculated from the 1 μs trajectories.



Figure S3. RMSD and RMSF graphs of AsCas12a protein and AsCas12a RNP complex. The free
AsCas12a protein is represented in red and the protein in the Cas12a RNP complex is represented in
black. (A) RMSD graphs of the backbone atoms of protein. RMSD values were calculated from the 1 μs
trajectories. (B) Per residue RMSF of the AsCas12a protein system and AsCas12a RNP complex. The
AsCas12a protein system is represented in red and protein in the RNP complex is represented in black.



Figure S4. The 2D-RMSD plots of WED-III domain. (A) Cas12a protein alone simulation and (B) Cas12a
RNP complex simulation. The 2D-RMSD values were calculated from every 500th frame of the 1 μs
trajectories.



Figure S5. (A) The Principal component projection of the top 2 modes of AsCas12a RNP and protein
alone systems. (B) The scatter plot showing PC mode 1 vs PC mode 2 distribution of AsCas12a RNP and
protein alone systems.

A

B



Figure S6. Solvent accessible surface area of the Cas12a protein and Cas12a-crRNA (RNP) complex. The
Cas12a protein is represented in red and protein in the Cas12a RNP complex is represented in black.



Figure S7. The surface electrostatic potential image of (A) pseudoknot occupied region of the Cas12a
protein system; (B) pseudoknot occupied region of the Cas12a RNP complex; (C) ssRNA occupied region
of the Cas12a protein system and (D) ssRNA occupied region of the Cas12a RNP complex. The positive
charged surface is represented in blue and negatively charged surface is represented in red.



Figure S8. RMSD graphs of the backbone atoms of AsCas12a protein from Alphafold database, protein
model generated manually, and AsCas12a RNP complex. The Cas12a protein from the Alphafold database
is represented in black, Cas12a generated manually in red, and protein in the Cas12a RNP complex in
green. The RMSD values were calculated from the 1 μs MD trajectories.

Figure S9. Per residue RMSF of AsCas12a protein from the Alphafold database, protein model generated
manually, and AsCas12a RNP complex. The Cas12a protein from the Alphafold database is represented in
black, Cas12a generated manually in red, and protein in the Cas12a RNP complex in green.



Figure S10. The distance between the Cα atoms of (A) K15 and L807; (B) R863 and L1022 from the 1 μs
MD trajectories. The running averages of the distances are represented in the plot. The AsCas12a protein
from the Alphafold database is shown in black, AsCas12a generated manually in red, and protein in the
AsCas12a RNP complex in green.

Figure S11. The solvent-accessible surface area of the AsCas12a protein from the Alphafold database, the
protein model generated manually, and the AsCas12a RNP complex. The Cas12a protein from the
Alphafold database is shown in black, Cas12a generated manually in red, and protein in the Cas12a RNP
complex in green.
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Figure S12. Per nucleotide RMSF of the pseudoknot in the free and bound form of (A) FnCas12a; (B)
LbCas12a. The free form is represented in red, and the pseudoknot bound to the RNP complex in black.

A B

Figure S13. End-to-end distance of the pseudoknot in the free and bound form in (A) FnCas12a; (B)
LbCas12a. The free form is represented in red, and the pseudoknot bound to the RNP complex in black.
The distances were calculated from the 1 μs MD trajectories.
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Figure S14. RMSD graphs of the backbone atoms of the free and bound forms of pseudoknot in (A)
FnCas12a; (B) LbCas12a. The free form is represented in red, and the pseudoknot bound to the RNP
complex in black. The RMSD values were calculated from the 1 μs MD trajectories.

A B

Figure S15. Superimposed image of the representative structures of the major cluster in the free
pseudoknot and bound pseudoknot in the RNP complex in (A) FnCas12a; (B) LbCas12a from the 1 μs MD
trajectories. The carbon atoms of the free pseudoknot are represented in magenta, and the carbon atoms
of the bound pseudoknot in green, nitrogen atoms in blue and oxygen atoms in red.
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Figure S16. Per residue RMSF of the Cas12a protein system and Cas12a RNP complex in (A) FnCas12a; (B)
LbCas12a. The Cas12a protein system is represented in red, and protein in the Cas12a RNP complex in
black. The residues are numbered -1 in FnCas12a and +1 in LbCas12a from the actual crystal structure in
the RMSF plots.
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Figure S17. (A) Representative image illustrating the amino acids considered for the distance
measurements in FnCas12a. (B) The distance between the Cα atoms of K15 and N851 of FnCas12a. (C)
Representative image illustrating the amino acids considered for the distance measurements in LbCas12a.
(D) The distance between the Cα atoms of K787 and V908 of LbCas12a. The distances are measured from
the 1 μs MD trajectories.
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Figure S18. Superimposed images of the major clusters of Cas12a protein and Cas12a RNP complex in (A)
FnCas12a; (B) LbCas12a. The Cas12a protein system is represented in red, and the Cas12a RNP complex in
green.
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Figure S19. The surface electrostatic potential image of (A) pseudoknot-occupied region of the FnCas12a
RNP complex; (B) pseudoknot-occupied region of the FnCas12a protein alone; (C) pseudoknot-occupied
region of the LbCas12a RNP complex; (D) pseudoknot occupied region of the FnCas12a protein alone.
The positively charged surface is represented in blue and negatively charged surface is represented in
red. The location of the pseudoknot and point of distinction are marked by dashed rectangular boxes.
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Figure S20. The solvent-accessible surface area of the protein in (A) FnCas12a protein system and RNP
complex; (B) LbCas12a protein system and RNP complex. The Cas12a protein system is represented in
red, and protein in the Cas12a RNP complex in black.
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Figure S21. The interdomain angle between (A) WED-II: WED-III: RuvC domain; (B) REC2: RuvC: NUC
domain. The histogram is sampled from the 1 μs MD trajectories. The Cas12a protein alone is shown in
red, and the Cas12a RNP in black.



Figure S22. Sequence Analysis of Mass Spec Data for AsCas12a Limited Trypsin Proteolysis 

 

>His6X-MBP-AsCas12a 

MKIHHHHHHEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY
AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNL
QEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGP
WAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYE
EELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSITSLYKKAGFMGAPPKK
KRKVGGMTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDWE
NLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHEN
ALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVF
SFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSD
EEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQ
RSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVD
PEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQK
GRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKK
FQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVE
TGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQ
KTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYL
KEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEI
VDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGT
QSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAW
DIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALI
RSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQ
DWLAYIQELRNPKKKRKVGGYPYDVPDYA 

 

Band 1 (A) 

MKIHHHHHHEEGK 

LVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAF
QDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADG
GYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNY
GVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATME
NAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSITSLYKKAGFMGAPPKKKRKVGG   

MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDWENLSAAID
SYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFD
KFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYN
QLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQS
FCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHE
DINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSAR
LTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQKGRYKAL



SFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYA
KKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGK 

LYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPI
PDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEH
PETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDL
MIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSG
FLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVF
EKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVL
QMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWL
AYIQELRNPKKKRKVGGYPYDVPDYA 

 

Band 2 (B) 

MKIHHHHHHEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY
AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNL
QEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGP
WAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYE
EELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSITSLYKKAGFMGAPPKK
KRKVGGMTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDWE
NLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHEN
ALLRSFDKFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVF
SFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSD
EEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQ
RSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVD
PEFSARLTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPKQK
GRYK 

ALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTA
YAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDAVETGKLY
LFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIP
DTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHP
ETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDL
MIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKMGTQSG
FLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMPAWDIVF
EKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALIRSVL
QMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWL
AYIQELR 

NPKKKRKVGGYPYDVPDYA 

 

Band 3 (C) 



MKIHHHHHHEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY
AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNL
QEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGP
WAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYE
EELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSITSLYKKAGFMGAPPKK
KRK 

VGG 

MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDRIYKTYADQCLQLVQLDWENLSAAID
SYRKEKTEETRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTTEHENALLRSFD
KFTTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVKKAIGIFVSTSIEEVFSFPFYN
QLLTQTQIDLYNQLLGGISREAGTEKIKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQS
FCKYKTLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSLKHE
DINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSAR
LTGIKLEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFVKNGLYYLGIMPK 

QKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEP
KKFQTAYAKKTGDQKGYREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRIAEKEIMDA
VETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLK
DQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVN
AYLKEHPETPIIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKERVAARQAWSVVGTIKDLKQGYLSQVI
HEIVDLMIHYQAVVVLENLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFAKM
GTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQRGLPGFMP
AWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTM
VALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIALKGQLLLNHLKESKDLKLQNG
ISNQDWLAYIQELRNPKKKRKVGGYPYDVPDYA 



Figure S23. Model fitting of DSF thermal melt data for apo-AsCas12a and AsCas12a RNP. (A) Three-state
sequential unfolding model and (B) two-state unfolding model.
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